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CHAPTER 8
PROGRAMMING WITH THE X87 FPU

The x87 Floating-Point Unit (FPU) provides high-performance floating-point processing capa-
bilities for use in graphics processing, scientific, engineering, and business applications. It
supports the floating-point, integer, and packed BCD integer data types and the floating-point
processing algorithms and exception handling architecture defined in the IEEE Standard 754 for
Binary Floating-Point Arithmetic.

This chapter describes the x87 FPU’s execution environment and instruction set. It also provides
exception handling information that is specific to the x87 FPU. Refer to the following chapters
or sections of chapters for additional information about x87 FPU instructions and floating-point
operations:

• Chapter 3, Instruction Set Reference A-M and Chapter 4, Instruction Set Reference N-Z of
the IA-32 Intel Architecture Software Developer’s Manual, Volumes 2A & 2B provide
detailed descriptions of x87 FPU instructions.

• Section 4.2.2., “Floating-Point Data Types”, Section 4.2.1.2., “Signed Integers”, and
Section 4.7., “BCD and Packed BCD Integers” describe the floating-point, integer, and
BCD data types.

• Section 4.9., “Overview of Floating-Point Exceptions”, Section 4.9.1., “Floating-Point
Exception Conditions”, and Section 4.9.2., “Floating-Point Exception Priority” give an
overview of the floating-point exceptions that the x87 FPU can detect and report.

8.1. X87 FPU EXECUTION ENVIRONMENT

The x87 FPU represents a separate execution environment within the IA-32 architecture (see
Figure 8-1). This execution environment consists of 8 data registers (called the x87 FPU data
registers) and the following special-purpose registers: 

• The status register

• The control register

• The tag word register

• Last instruction pointer register

• Last data (operand) pointer register

• Opcode register

These registers are described in the following sections.

The x87 FPU executes instructions from the processor’s normal instruction stream. The state
of the x87 FPU is independent from the state of the basic execution environment (described
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in Chapter 7) and from the state of SSE/SSE2/SSE3 extensions (described in Chapters 10, 11
and 12). 

However, the x87 FPU and Intel MMX technology share state because the MMX registers are
aliased to the x87 FPU data registers. Therefore, when writing code that uses x87 FPU and
MMX instructions, the programmer must explicitly manage the x87 FPU and MMX state (see
Section 9.5., “Compatibility with x87 FPU Architecture”).

8.1.1. x87 FPU Data Registers

The x87 FPU data registers (shown in Figure 8-1) consist of eight 80-bit registers. Values are
stored in these registers in the double extended-precision floating-point format shown in Figure
4-3. When floating-point, integer, or packed BCD integer values are loaded from memory into
any of the x87 FPU data registers, the values are automatically converted into double extended-
precision floating-point format (if they are not already in that format). When computation results
are subsequently transferred back into memory from any of the x87 FPU registers, the results can
be left in the double extended-precision floating-point format or converted back into a shorter
floating-point format, an integer format, or the packed BCD integer format. (See Section 8.2.,
“x87 FPU Data Types” for a description of the data types operated on by the x87 FPU.)

The x87 FPU instructions treat the eight x87 FPU data registers as a register stack (see Figure
8-2). All addressing of the data registers is relative to the register on the top of the stack. The

Figure 8-1.  x87 FPU Execution Environment
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register number of the current top-of-stack register is stored in the TOP (stack TOP) field in the
x87 FPU status word. Load operations decrement TOP by one and load a value into the new top-
of-stack register, and store operations store the value from the current TOP register in memory
and then increment TOP by one. (For the x87 FPU, a load operation is equivalent to a push and
a store operation is equivalent to a pop.) Note that load and store operations are also available
that do not push and pop the stack.

If a load operation is performed when TOP is at 0, register wraparound occurs and the new value
of TOP is set to 7. The floating-point stack-overflow exception indicates when wraparound
might cause an unsaved value to be overwritten (see Section 8.5.1.1., “Stack Overflow or Under-
flow Exception (#IS)”).

Many floating-point instructions have several addressing modes that permit the programmer to
implicitly operate on the top of the stack, or to explicitly operate on specific registers relative to
the TOP. Assemblers support these register addressing modes, using the expression ST(0), or
simply ST, to represent the current stack top and ST(i) to specify the ith register from TOP in
the stack (0 d i d 7). For example, if TOP contains 011B (register 3 is the top of the stack), the
following instruction would add the contents of two registers in the stack (registers 3 and 5):

FADD ST, ST(2);

Figure 8-3 shows an example of how the stack structure of the x87 FPU registers and instruc-
tions are typically used to perform a series of computations. Here, a two-dimensional dot
product is computed, as follows:

1. The first instruction (FLD value1) decrements the stack register pointer (TOP) and
loads the value 5.6 from memory into ST(0). The result of this operation is shown in snap-
shot (a). 

2. The second instruction multiplies the value in ST(0) by the value 2.4 from memory and
stores the result in ST(0), shown in snap-shot (b).

3. The third instruction decrements TOP and loads the value 3.8 in ST(0).

Figure 8-2.  x87 FPU Data Register Stack
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4. The fourth instruction multiplies the value in ST(0) by the value 10.3 from memory and
stores the result in ST(0), shown in snap-shot (c).

5. The fifth instruction adds the value and the value in ST(1) and stores the result in ST(0),
shown in snap-shot (d).

The style of programming demonstrated in this example is supported by the floating-point
instruction set. In cases where the stack structure causes computation bottlenecks, the FXCH
(exchange x87 FPU register contents) instruction can be used to streamline a computation.

8.1.1.1. PARAMETER PASSING WITH THE X87 FPU REGISTER STACK

Like the general-purpose registers, the contents of the x87 FPU data registers are unaffected by
procedure calls, or in other words, the values are maintained across procedure boundaries. A
calling procedure can thus use the x87 FPU data registers (as well as the procedure stack) for
passing parameter between procedures. The called procedure can reference parameters passed
through the register stack using the current stack register pointer (TOP) and the ST(0) and ST(i)
nomenclature. It is also common practice for a called procedure to leave a return value or result
in register ST(0) when returning execution to the calling procedure or program.

When mixing MMX and x87 FPU instructions in the procedures or code sequences, the
programmer is responsible for maintaining the integrity of parameters being passed in the x87
FPU data registers. If an MMX instruction is executed before the parameters in the x87 FPU data

Figure 8-3.  Example x87 FPU Dot Product Computation
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Code:
FLD  value1 ;(a) value1=5.6

FMUL value2 ;(b) value2=2.4

FLD  value3 ; value3=3.8

FMUL value4 ;(c)value4=10.3

FADD ST(1)  ;(d)
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registers have been passed to another procedure, the parameters may be lost (see Section 9.5.,
“Compatibility with x87 FPU Architecture”).

8.1.2. x87 FPU Status Register

The 16-bit x87 FPU status register (see Figure 8-4) indicates the current state of the x87 FPU.
The flags in the x87 FPU status register include the FPU busy flag, top-of-stack (TOP) pointer,
condition code flags, error summary status flag, stack fault flag, and exception flags. The x87
FPU sets the flags in this register to show the results of operations. 

The contents of the x87 FPU status register (referred to as the x87 FPU status word) can be
stored in memory using the FSTSW/FNSTSW, FSTENV/FNSTENV, FSAVE/FNSAVE, and
FXSAVE instructions. It can also be stored in the AX register of the integer unit, using the
FSTSW/FNSTSW instructions.

8.1.2.1. TOP OF STACK (TOP) POINTER

A pointer to the x87 FPU data register that is currently at the top of the x87 FPU register stack
is contained in bits 11 through 13 of the x87 FPU status word. This pointer, which is commonly
referred to as TOP (for top-of-stack), is a binary value from 0 to 7. See Section 8.1.1., “x87
FPU Data Registers” for more information about the TOP pointer.

Figure 8-4.  x87 FPU Status Word
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8.1.2.2. CONDITION CODE FLAGS

The four condition code flags (C0 through C3) indicate the results of floating-point comparison
and arithmetic operations. Table 8-1 summarizes the manner in which the floating-point instruc-
tions set the condition code flags. These condition code bits are used principally for conditional
branching and for storage of information used in exception handling (see Section 8.1.3.,
“Branching and Conditional Moves on Condition Codes”).

As shown in Table 8-1, the C1 condition code flag is used for a variety of functions. When both
the IE and SF flags in the x87 FPU status word are set, indicating a stack overflow or underflow
exception (#IS), the C1 flag distinguishes between overflow (C1=1) and underflow (C1=0).
When the PE flag in the status word is set, indicating an inexact (rounded) result, the C1 flag is
set to 1 if the last rounding by the instruction was upward. The FXAM instruction sets C1 to the
sign of the value being examined.

The C2 condition code flag is used by the FPREM and FPREM1 instructions to indicate an
incomplete reduction (or partial remainder). When a successful reduction has been completed,
the C0, C3, and C1 condition code flags are set to the three least-significant bits of the quotient
(Q2, Q1, and Q0, respectively). See “FPREM1—Partial Remainder” in Chapter 3, Instruction
Set Reference A-M, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2 for
more information on how these instructions use the condition code flags.

The FPTAN, FSIN, FCOS, and FSINCOS instructions set the C2 flag to 1 to indicate that the
source operand is beyond the allowable range of ±263 and clear the C2 flag if the source operand
is within the allowable range.

Where the state of the condition code flags are listed as undefined in Table 8-1, do not rely on
any specific value in these flags.

8.1.2.3. X87 FPU FLOATING-POINT EXCEPTION FLAGS

The six x87 FPU floating-point exception flags (bits 0 through 5) of the x87 FPU status word
indicate that one or more floating-point exceptions have been detected since the bits were last
cleared. The individual exception flags (IE, DE, ZE, OE, UE, and PE) are described in detail in
Section 8.4., “x87 FPU Floating-Point Exception Handling”. Each of the exception flags can be
masked by an exception mask bit in the x87 FPU control word (see Section 8.1.4., “x87 FPU
Control Word”). The exception summary status flag (ES, bit 7) is set when any of the unmasked
exception flags are set. When the ES flag is set, the x87 FPU exception handler is invoked, using
one of the techniques described in Section 8.7., “Handling x87 FPU Exceptions in Software”.
(Note that if an exception flag is masked, the x87 FPU will still set the appropriate flag if the
associated exception occurs, but it will not set the ES flag.) 

The exception flags are “sticky” bits (once set, they remain set until explicitly cleared). They
can be cleared by executing the FCLEX/FNCLEX (clear exceptions) instructions, by reinitial-
izing the x87 FPU with the FINIT/FNINIT or FSAVE/FNSAVE instructions, or by overwriting
the flags with an FRSTOR or FLDENV instruction.

The B-bit (bit 15) is included for 8087 compatibility only. It reflects the contents of the ES flag.
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8.1.2.4. STACK FAULT FLAG

The stack fault flag (bit 6 of the x87 FPU status word) indicates that stack overflow or stack
underflow has occurred with data in the x87 FPU data register stack. The x87 FPU explicitly
sets the SF flag when it detects a stack overflow or underflow condition, but it does not explicitly
clear the flag when it detects an invalid-arithmetic-operand condition. 

Table 8-1.  Condition Code Interpretation

Instruction C0 C3 C2 C1

FCOM, FCOMP, FCOMPP, 
FICOM, FICOMP, FTST, 
FUCOM, FUCOMP, 
FUCOMPP 

Result of Comparison Operands 
are not 
Comparable

0 or #IS

FCOMI, FCOMIP, FUCOMI, 
FUCOMIP

Undefined. (These instructions set the 
status flags in the EFLAGS register.)

#IS

FXAM  Operand class Sign

FPREM, FPREM1 Q2 Q1 0=reduction 
complete
1=reduction 
incomplete

Q0 or #IS

F2XM1, FADD, FADDP, 
FBSTP, FCMOVcc, FIADD, 
FDIV, FDIVP, FDIVR, 
FDIVRP, FIDIV, FIDIVR, 
FIMUL, FIST, FISTP, FISUB, 
FISUBR,FMUL, FMULP, 
FPATAN, FRNDINT, 
FSCALE, FST, FSTP, FSUB, 
FSUBP, FSUBR, 
FSUBRP,FSQRT, FYL2X, 
FYL2XP1

Undefined Roundup or #IS

FCOS, FSIN, FSINCOS, 
FPTAN

Undefined 0=source 
operand within 
range
1=source 
operand out of 
range

Roundup or #IS 
(Undefined if 
C2=1)

FABS, FBLD, FCHS, 
FDECSTP, FILD, FINCSTP, 
FLD, Load Constants, FSTP 
(ext. prec.), FXCH, FXTRACT 

Undefined 0 or #IS

FLDENV, FRSTOR Each bit loaded from memory

FFREE, FLDCW, 
FCLEX/FNCLEX, FNOP, 
FSTCW/FNSTCW, 
FSTENV/FNSTENV, 
FSTSW/FNSTSW, 

Undefined

FINIT/FNINIT, 
FSAVE/FNSAVE

0 0 0 0
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When this flag is set, the condition code flag C1 indicates the nature of the fault: overflow
(C1 = 1) and underflow (C1 = 0). The SF flag is a “sticky” flag, meaning that after it is set,
the processor does not clear it until it is explicitly instructed to do so (for example, by an
FINIT/FNINIT, FCLEX/FNCLEX, or FSAVE/FNSAVE instruction). 

See Section 8.1.6., “x87 FPU Tag Word” for more information on x87 FPU stack faults.

8.1.3. Branching and Conditional Moves on Condition Codes

The x87 FPU (beginning with the P6 family processors) supports two mechanisms for branching
and performing conditional moves according to comparisons of two floating-point values. These
mechanism are referred to here as the “old mechanism” and the “new mechanism.” 

The old mechanism is available in x87 FPU’s prior to the P6 family processors and in P6 family
processors. This mechanism uses the floating-point compare instructions (FCOM, FCOMP,
FCOMPP, FTST, FUCOMPP, FICOM, and FICOMP) to compare two floating-point values and
set the condition code flags (C0 through C3) according to the results. The contents of the condi-
tion code flags are then copied into the status flags of the EFLAGS register using a two step
process (see Figure 8-5):

1. The FSTSW AX instruction moves the x87 FPU status word into the AX register.

2. The SAHF instruction copies the upper 8 bits of the AX register, which includes the
condition code flags, into the lower 8 bits of the EFLAGS register.

When the condition code flags have been loaded into the EFLAGS register, conditional jumps
or conditional moves can be performed based on the new settings of the status flags in the
EFLAGS register.

Figure 8-5.  Moving the Condition Codes to the EFLAGS Register
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The new mechanism is available beginning with the P6 family processors. Using this mecha-
nism, the new floating-point compare and set EFLAGS instructions (FCOMI, FCOMIP,
FUCOMI, and FUCOMIP) compare two floating-point values and set the ZF, PF, and CF flags
in the EFLAGS register directly. A single instruction thus replaces the three instructions
required by the old mechanism.

Note also that the FCMOVcc instructions (also new in the P6 family processors) allow condi-
tional moves of floating-point values (values in the x87 FPU data registers) based on the setting
of the status flags (ZF, PF, and CF) in the EFLAGS register. These instructions eliminate the
need for an IF statement to perform conditional moves of floating-point values.

8.1.4. x87 FPU Control Word

The 16-bit x87 FPU control word (see Figure 8-6) controls the precision of the x87 FPU and
rounding method used. It also contains the x87 FPU floating-point exception mask bits. The
control word is cached in the x87 FPU control register. The contents of this register can be
loaded with the FLDCW instruction and stored in memory with the FSTCW/FNSTCW instruc-
tions.

When the x87 FPU is initialized with either an FINIT/FNINIT or FSAVE/FNSAVE instruction,
the x87 FPU control word is set to 037FH, which masks all floating-point exceptions, sets
rounding to nearest, and sets the x87 FPU precision to 64 bits.

Figure 8-6.  x87 FPU Control Word
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8.1.4.1. X87 FPU FLOATING-POINT EXCEPTION MASK BITS

The exception-flag mask bits (bits 0 through 5 of the x87 FPU control word) mask the 6 floating-
point exception flags in the x87 FPU status word. When one of these mask bits is set, its corre-
sponding x87 FPU floating-point exception is blocked from being generated.

8.1.4.2. PRECISION CONTROL FIELD

The precision-control (PC) field (bits 8 and 9 of the x87 FPU control word) determines the preci-
sion (64, 53, or 24 bits) of floating-point calculations made by the x87 FPU (see Table 8-2). The
default precision is double extended precision, which uses the full 64-bit significand available
with the double extended-precision floating-point format of the x87 FPU data registers. This
setting is best suited for most applications, because it allows applications to take full advantage
of the maximum precision available with the x87 FPU data registers.

The double precision and single precision settings reduce the size of the significand to 53 bits
and 24 bits, respectively. These settings are provided to support IEEE Standard 754 and to
provide compatibility with the specifications of certain existing programming languages. Using
these settings nullifies the advantages of the double extended-precision floating-point format's
64-bit significand length. When reduced precision is specified, the rounding of the significand
value clears the unused bits on the right to zeros. 

The precision-control bits only affect the results of the following floating-point instructions:
FADD, FADDP, FIADD, FSUB, FSUBP, FISUB, FSUBR, FSUBRP, FISUBR, FMUL,
FMULP, FIMUL, FDIV, FDIVP, FIDIV, FDIVR, FDIVRP, FIDIVR, and FSQRT.

8.1.4.3. ROUNDING CONTROL FIELD

The rounding-control (RC) field of the x87 FPU control register (bits 10 and 11) controls how
the results of x87 FPU floating-point instructions are rounded. See Section 4.8.4., “Rounding”
for a discussion of rounding of floating-point values; See Section 4.8.4.1., “Rounding Control
(RC) Fields” for the encodings of the RC field.

Table 8-2.  Precision Control Field (PC)

Precision PC Field

Single Precision (24 bits) 00B

Reserved 01B

Double Precision (53 bits) 10B

Double Extended Precision (64 bits) 11B
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8.1.5. Infinity Control Flag

The infinity control flag (bit 12 of the x87 FPU control word) is provided for compatibility with
the Intel 287 Math Coprocessor; it is not meaningful for later version x87 FPU coprocessors or
IA-32 processors. See Section 4.8.3.3., “Signed Infinities”, for information on how the x87
FPUs handle infinity values.

8.1.6. x87 FPU Tag Word

The 16-bit tag word (see Figure 8-7) indicates the contents of each the 8 registers in the x87 FPU
data-register stack (one 2-bit tag per register). The tag codes indicate whether a register contains
a valid number, zero, or a special floating-point number (NaN, infinity, denormal, or unsup-
ported format), or whether it is empty. The x87 FPU tag word is cached in the x87 FPU in the
x87 FPU tag word register. When the x87 FPU is initialized with either an FINIT/FNINIT or
FSAVE/FNSAVE instruction, the x87 FPU tag word is set to FFFFH, which marks all the x87
FPU data registers as empty.

.

Each tag in the x87 FPU tag word corresponds to a physical register (numbers 0 through 7). The
current top-of-stack (TOP) pointer stored in the x87 FPU status word can be used to associate
tags with registers relative to ST(0).

The x87 FPU uses the tag values to detect stack overflow and underflow conditions (see Section
8.5.1.1., “Stack Overflow or Underflow Exception (#IS)”).

Application programs and exception handlers can use this tag information to check the contents
of an x87 FPU data register without performing complex decoding of the actual data in the
register. To read the tag register, it must be stored in memory using either the
FSTENV/FNSTENV or FSAVE/FNSAVE instructions. The location of the tag word in memory
after being saved with one of these instructions is shown in Figures 8-9 through 8-12.

Software cannot directly load or modify the tags in the tag register. The FLDENV and
FRSTOR instructions load an image of the tag register into the x87 FPU; however, the x87 FPU
uses those tag values only to determine if the data registers are empty (11B) or non-empty
(00B, 01B, or 10B). 

Figure 8-7.  x87 FPU Tag Word
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If the tag register image indicates that a data register is empty, the tag in the tag register for that
data register is marked empty (11B); if the tag register image indicates that the data register is
non-empty, the x87 FPU reads the actual value in the data register and sets the tag for the register
accordingly. This action prevents a program from setting the values in the tag register to incor-
rectly represent the actual contents of non-empty data registers.

8.1.7. x87 FPU Instruction and Data (Operand) Pointers

The x87 FPU stores pointers to the instruction and data (operand) for the last non-control
instruction executed. These pointers are stored in two 48-bit registers: the x87 FPU instruction
pointer and x87 FPU operand (data) pointer registers (see Figure 8-1). (These pointers are saved
to provide state information for exception handlers.) 

Note that the value in the x87 FPU data pointer register is always a pointer to a memory operand,
If the last non-control instruction that was executed did not have a memory operand, the value
in the data pointer register is undefined (reserved).

The contents of the x87 FPU instruction and data pointer registers remain unchanged when any
of the control instructions (FINIT/FNINIT, FCLEX/FNCLEX, FLDCW, FSTCW/FNSTCW,
FSTSW/FNSTSW, FSTENV/FNSTENV, FLDENV, FSAVE/FNSAVE, FRSTOR, and
WAIT/FWAIT) are executed.

The pointers stored in the x87 FPU instruction and data pointer registers consist of an offset
(stored in bits 0 through 31) and a segment selector (stored in bits 32 through 47). 

These registers can be accessed by the FSTENV/FNSTENV, FLDENV, FINIT/FNINIT,
FSAVE/FNSAVE, FRSTOR, FXSAVE, and FXRSTOR instructions. The FINIT/FNINIT and
FSAVE/FNSAVE instructions clear these registers.

For all the x87 FPUs and NPXs except the 8087, the x87 FPU instruction pointer points to any
prefixes that preceded the instruction. For the 8087, the x87 FPU instruction pointer points only
to the actual opcode.

8.1.8. Last Instruction Opcode

The x87 FPU stores the opcode of the last non-control instruction executed in an 11-bit x87 FPU
opcode register. (This information provides state information for exception handlers.) Only the
first and second opcode bytes (after all prefixes) are stored in the x87 FPU opcode register.
Figure 8-8 shows the encoding of these two bytes. Since the upper 5 bits of the first opcode byte
are the same for all floating-point opcodes (11011B), only the lower 3 bits of this byte are stored
in the opcode register.

8.1.8.1. FOPCODE COMPATIBILITY MODE

Beginning with the Pentium 4 and Intel Xeon processors, the IA-32 architecture provides
program control over the storing of the last instruction opcode (sometimes referred to as the
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fopcode). Here, bit 2 of the IA32_MISC_ENABLE MSR enables (set) or disables (clear) the
fopcode compatibility mode. 

If FOP code compatibility mode is enabled, the FOP is defined as it has always been in previous
IA32 implementations (always defined as the FOP of the last non-transparent FP instruction
executed before a FSAVE/FSTENV/FXSAVE). If FOP code compatibility mode is disabled
(default), FOP is only valid if the last non-transparent FP instruction executed before a
FSAVE/FSTENV/FXSAVE had an unmasked exception.

The fopcode compatibility mode should be enabled only when x87 FPU floating-point excep-
tion handlers are designed to use the fopcode to analyze program performance or restart a
program after an exception has been handled.

8.1.9. Saving the x87 FPU’s State with the FSTENV/FNSTENV 
and FSAVE/FNSAVE Instructions

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions store x87 FPU state information in
memory for use by exception handlers and other system and application software. The
FSTENV/FNSTENV instruction saves the contents of the status, control, tag, x87 FPU instruc-
tion pointer, x87 FPU operand pointer, and opcode registers. The FSAVE/FNSAVE instruction
stores that information plus the contents of the x87 FPU data registers. Note that the
FSAVE/FNSAVE instruction also initializes the x87 FPU to default values (just as the
FINIT/FNINIT instruction does) after it has saved the original state of the x87 FPU.

The manner in which this information is stored in memory depends on the operating mode of
the processor (protected mode or real-address mode) and on the operand-size attribute in effect
(32-bit or 16-bit). See Figures 8-9 through 8-12. In virtual-8086 mode or SMM, the real-address
mode formats shown in Figure 8-12 is used. See “Using the FPU in SMM” in Chapter 13 of the
IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for special considerations for
using the x87 FPU while in SMM.

Figure 8-8.  Contents of x87 FPU Opcode Registers
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The FLDENV and FRSTOR instructions allow x87 FPU state information to be loaded from
memory into the x87 FPU. Here, the FLDENV instruction loads only the status, control, tag, x87
FPU instruction pointer, x87 FPU operand pointer, and opcode registers, and the FRSTOR
instruction loads all the x87 FPU registers, including the x87 FPU stack registers. 

Figure 8-9.  Protected Mode x87 FPU State Image in Memory, 32-Bit Format

Figure 8-10.  Real Mode x87 FPU State Image in Memory, 32-Bit Format
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8.1.10. Saving the x87 FPU’s State with the FXSAVE Instruction

The FXSAVE and FXRSTOR instructions save and restore, respectively, the x87 FPU state along
with the state of the XMM registers and the MXCSR register. Using the FXSAVE instruction to
save the x87 FPU state has two benefits: (1) FXSAVE executes faster than FSAVE, and (2)
FXSAVE saves the entire x87 FPU, MMX, and XMM state in one operation. See Section 10.5.,
“FXSAVE and FXRSTOR Instructions” for additional information about these instructions.

8.2. X87 FPU DATA TYPES

The x87 FPU recognizes and operates on the following seven data types (see Figures 8-13):
single-precision floating point, double-precision floating point, double extended-precision
floating point, signed word integer, signed doubleword integer, signed quadword integer, and
packed BCD decimal integers. 

Figure 8-11.  Protected Mode x87 FPU State Image in Memory, 16-Bit Format

Figure 8-12.  Real Mode x87 FPU State Image in Memory, 16-Bit Format
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For detailed information about these data types, see Section 4.2.2., “Floating-Point Data Types”,
Section 4.2.1.2., “Signed Integers”, and Section 4.7., “BCD and Packed BCD Integers”.

With the exception of the 80-bit double extended-precision floating-point format, all of these
data types exist in memory only. When they are loaded into x87 FPU data registers, they are
converted into double extended-precision floating-point format and operated on in that format.

Denormal values are also supported in each of the floating-point types, as required by IEEE
Standard 754. When a denormal number in single-precision or double-precision floating-point
format is used as a source operand and the denormal exception is masked, the x87 FPU automat-
ically normalizes the number when it is converted to double extended-precision format.

When stored in memory, the least significant byte of an x87 FPU data-type value is stored at the
initial address specified for the value. Successive bytes from the value are then stored in succes-
sively higher addresses in memory. The floating-point instructions load and store memory oper-
ands using only the initial address of the operand.

Figure 8-13.  x87 FPU Data Type Formats
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As a general rule, values should be stored in memory in double-precision format. This format
provides sufficient range and precision to return correct results with a minimum of programmer
attention. The single-precision format is useful for debugging algorithms, because rounding
problems will manifest themselves more quickly in this format. The double extended-precision
format is normally reserved for holding intermediate results in the x87 FPU registers and
constants. Its extra length is designed to shield final results from the effects of rounding and
overflow/underflow in intermediate calculations. However, when an application requires the
maximum range and precision of the x87 FPU (for data storage, computations, and results),
values can be stored in memory in double extended-precision format.

8.2.1. Indefinites

For each x87 FPU data type, one unique encoding is reserved for representing the special
value indefinite. The x87 FPU produces indefinite values as responses to some masked
floating-point invalid-operation exceptions. See Tables 4-1, 4-3, and 4-4 for the encoding of
the integer indefinite, QNaN floating-point indefinite, and packed BCD integer indefinite,
respectively. 

The binary integer encoding 100..00B represents either of two things, depending on the circum-
stances of its use:

• The largest negative number supported by the format (–215, –231, or –263)

• The integer indefinite value

If this encoding is used as a source operand (as in an integer load or integer arithmetic instruc-
tion), the x87 FPU interprets it as the largest negative number representable in the format being
used. If the x87 FPU detects an invalid operation when storing an integer value in memory with
an FIST/FISTP instruction and the invalid-operation exception is masked, the x87 FPU stores
the integer indefinite encoding in the destination operand as a masked response to the excep-
tion. In situations where the origin of a value with this encoding may be ambiguous, the
invalid-operation exception flag can be examined to see if the value was produced as a response
to an exception.

8.2.2. Unsupported Double Extended-Precision Floating-Point 
Encodings and Pseudo-Denormals

The double extended-precision floating-point format permits many encodings that do not fall
into any of the categories shown in Table 4-3. Table 8-3 shows these unsupported encodings.
Some of these encodings were supported by the Intel 287 math coprocessor; however, most of
them are not supported by the Intel 387 math coprocessor and later IA-32 processors. These
encodings are no longer supported due to changes made in the final version of IEEE Standard
754 that eliminated these encodings.
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Specifically, the categories of encodings formerly known as pseudo-NaNs, pseudo-infinities,
and un-normal numbers are not supported and should not be used as operand values. The Intel
387 math coprocessor and later IA-32 processors generate an invalid-operation exception when
these encodings are encountered as operands.

Beginning with the Intel 387 math coprocessor, the encodings formerly known as pseudo-
denormal numbers are not generated by IA-32 processors. When encountered as operands,
however, they are handled correctly; that is, they are treated as denormals and a denormal excep-
tion is generated. Pseudo-denormal numbers should not be used as operand values. They are
supported by current IA-32 processors (as described here) to support legacy code.

Table 8-3.  Unsupported Double Extended-Precision Floating-Point Encodings and 

Pseudo-Denormals 

Class Sign Biased Exponent
Significand

Integer Fraction

Positive 
Pseudo-NaNs Quiet

0
.
0

11..11
.

11..11

0 11..11
.

10..00

Signaling
0
.
0

11..11
.

11..11

0  01..11
.

00..01

Positive Floating 
Point

Pseudo-infinity 0 11..11 0 00..00

Unnormals
0
.
0

11..10
.

00..01

0 11..11
.

00..00

Pseudo-denormals 0
.
0

00..00
.

00..00

1 11..11
.

00..00

Negative Floating 
Point

Pseudo-denormals 1
.
1

00..00
.

00..00

1 11..11
.

00..00

Unnormals
1
.
1

11..10
.

00..01

0 11..01
.

00..00

Pseudo-infinity 1 11..11 0 00..00

Negative 
Pseudo-NaNs Signaling

1
.
1

11..11
.

11..11

0 01..11
.

00..01

Quiet
1
.
1

11..11
.

11..11

0 11..11
.

10..00

m�15 bits o m�63 bits o



Vol. 1 8-19

PROGRAMMING WITH THE X87 FPU

8.3. X86 FPU INSTRUCTION SET

The floating-point instructions that the x87 FPU supports can be grouped into six functional
categories:

• Data transfer instructions

• Basic arithmetic instructions

• Comparison instructions

• Transcendental instructions

• Load constant instructions

• x87 FPU control instructions

See Section 5.2., “x87 FPU Instructions”, for a list of the floating-point instructions by category.

The following section briefly describes the instructions in each category. Detailed descriptions
of the floating-point instructions are given in Chapter 3, Instruction Set Reference A-M and
Chapter 4, Instruction Set Reference N-Z of the IA-32 Intel Architecture Software Developer’s
Manual, Volumes 2A & 2B. 

8.3.1. Escape (ESC) Instructions

All of the instructions in the x87 FPU instruction set fall into a class of instructions known as
escape (ESC) instructions. All of these instructions have a common opcode format, where the
first byte of the opcode is one of the numbers from D8H through DFH.

8.3.2. x87 FPU Instruction Operands

Most floating-point instructions require one or two operands, located on the x87 FPU data-
register stack or in memory. (None of the floating-point instructions accept immediate
operands.) 

When an operand is located in a data register, it is referenced relative to the ST(0) register (the
register at the top of the register stack), rather than by a physical register number. Often the
ST(0) register is an implied operand.

Operands in memory can be referenced using the same operand addressing methods described
in Section 3.7., “Operand Addressing”.

8.3.3. Data Transfer Instructions

The data transfer instructions (see Table 8-4) perform the following operations:

• Load a floating-point, integer, or packed BCD operand from memory into the ST(0)
register.
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• Store the value in an ST(0) register to memory in floating-point, integer, or packed BCD
format.

• Move values between registers in the x87 FPU register stack.

The FLD (load floating point) instruction pushes a floating-point operand from memory onto
the top of the x87 FPU data-register stack. If the operand is in single-precision or double-preci-
sion floating-point format, it is automatically converted to double extended-precision floating-
point format. This instruction can also be used to push the value in a selected x87 FPU data
register onto the top of the register stack.

The FILD (load integer) instruction converts an integer operand in memory into double
extended-precision floating-point format and pushes the value onto the top of the register stack.
The FBLD (load packed decimal) instruction performs the same load operation for a packed
BCD operand in memory.

The FST (store floating point) and FIST (store integer) instructions store the value in register
ST(0) in memory in the destination format (floating point or integer, respectively). Again, the
format conversion is carried out automatically.

The FSTP (store floating point and pop), FISTP (store integer and pop), and FBSTP (store
packed decimal and pop) instructions store the value in the ST(0) registers into memory in the
destination format (floating point, integer, or packed BCD), then performs a pop operation on
the register stack. A pop operation causes the ST(0) register to be marked empty and the stack
pointer (TOP) in the x87 FPU control work to be incremented by 1. The FSTP instruction can
also be used to copy the value in the ST(0) register to another x87 FPU register [ST(i)].

The FXCH (exchange register contents) instruction exchanges the value in a selected register in
the stack [ST(i)] with the value in ST(0).

The FCMOVcc (conditional move) instructions move the value in a selected register in the stack
[ST(i)] to register ST(0) if a condition specified with a condition code (cc) is satisfied (see Table
8-5). The condition being tested for is represented by the status flags in the EFLAGS register.
The condition code mnemonics are appended to the letters “FCMOV” to form the mnemonic for
a FCMOVcc instruction.

Table 8-4.  Data Transfer Instructions

Floating Point Integer Packed Decimal

FLD Load Floating Point FILD Load Integer FBLD Load Packed
Decimal

FST Store Floating Point FIST Store Integer

FSTP Store Floating Point 
and Pop

FISTP Store Integer
and Pop

FBSTP Store Packed
Decimal and Pop

FXCH Exchange Register 
Contents

FCMOVcc Conditional Move
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Like the CMOVcc instructions, the FCMOVcc instructions are useful for optimizing small IF
constructions. They also help eliminate branching overhead for IF operations and the possibility
of branch mispredictions by the processor. 

Software can check if the FCMOVcc instructions are supported by checking the processor’s
feature information with the CPUID instruction (see “CPUID—CPU Identification” in Chapter
3, Instruction Set Reference A-M of the IA-32 Intel Architecture Software Developer’s Manual,
Volume 2A).

8.3.4. Load Constant Instructions

The following instructions push commonly used constants onto the top [ST(0)] of the x87 FPU
register stack:

FLDZ Load +0.0
FLD1 Load +1.0
FLDPI Load S
FLDL2T Load log2 10
FLDL2E Load log2e
FLDLG2 Load log102
FLDLN2 Load loge2

The constant values have full double extended-precision floating-point precision (64 bits) and
are accurate to approximately 19 decimal digits. They are stored internally in a format more
precise than double extended-precision floating point. When loading the constant, the x87 FPU
rounds the more precise internal constant according to the RC (rounding control) field of the x87
FPU control word. The inexact-result exception (#P) is not generated as a result of this rounding,
nor is the C1 flag set in the x87 FPU status word if the value is rounded up. See Section 8.3.8.,
“Pi”, for information on the S constant.

Table 8-5.  Floating-Point Conditional Move Instructions

Instruction Mnemonic Status Flag States Condition Description

FCMOVB CF 1 Below

FCMOVNB CF 0 Not below

FCMOVE ZF 1 Equal

FCMOVNE ZF 0 Not equal

FCMOVBE CF 1 or ZF 1 Below or equal

FCMOVNBE CF 0 or ZF 0 Not below nor equal

FCMOVU PF 1 Unordered

FCMOVNU PF 0 Not unordered
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8.3.5. Basic Arithmetic Instructions

The following floating-point instructions perform basic arithmetic operations on floating-point
numbers. Where applicable, these instructions match IEEE Standard 754:

FADD/FADDP Add floating point
FIADD Add integer to floating point
FSUB/FSUBP Subtract floating point
FISUB Subtract integer from floating point
FSUBR/FSUBRP Reverse subtract floating point
FISUBR Reverse subtract floating point from integer
FMUL/FMULP Multiply floating point
FIMUL Multiply integer by floating point
FDIV/FDIVP Divide floating point
FIDIV Divide floating point by integer
FDIVR/FDIVRP Reverse divide
FIDIVR Reverse divide integer by floating point
FABS Absolute value
FCHS Change sign
FSQRT Square root
FPREM Partial remainder
FPREM1 IEEE partial remainder
FRNDINT Round to integral value
FXTRACT Extract exponent and significand

The add, subtract, multiply and divide instructions operate on the following types of operands:

• Two x87 FPU data registers

• An x87 FPU data register and a floating-point or integer value in memory

See Section 8.1.1., “x87 FPU Data Registers” for a description of how operands are referenced
on the data register stack.

Operands in memory can be in single-precision floating-point, double-precision floating-point,
word-integer, or doubleword-integer format. They are converted to double extended-precision
floating-point format automatically.

Reverse versions of the subtract (FSUBR) and divide (FDIVR) instructions enable efficient
coding. For example, the following options are available with the FSUB and FSUBR instruc-
tions for operating on values in a specified x87 FPU data register ST(i) and the ST(0) register:

FSUB:

ST(0) m�ST(0) � ST(i)

ST(i) m�ST(i) � ST(0)

FSUBR:

ST(0) m�ST(i) � ST(0)

ST(i) m�ST(0) � ST(i)
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These instructions eliminate the need to exchange values between the ST(0) register and another
x87 FPU register to perform a subtraction or division.

The pop versions of the add, subtract, multiply, and divide instructions offer the option of
popping the x87 FPU register stack following the arithmetic operation. These instructions
operate on values in the ST(i) and ST(0) registers, store the result in the ST(i) register, and pop
the ST(0) register.

The FPREM instruction computes the remainder from the division of two operands in the
manner used by the Intel 8087 and Intel 287 math coprocessors; the FPREM1 instruction
computes the remainder in the manner specified in IEEE Standard 754.

The FSQRT instruction computes the square root of the source operand.

The FRNDINT instruction returns a floating-point value that is the integral value closest to the
source value in the direction of the rounding mode specified in the RC field of the x87 FPU
control word.

The FABS, FCHS, and FXTRACT instructions perform convenient arithmetic operations. The
FABS instruction produces the absolute value of the source operand. The FCHS instruction
changes the sign of the source operand. The FXTRACT instruction separates the source operand
into its exponent and fraction and stores each value in a register in floating-point format.

8.3.6. Comparison and Classification Instructions

The following instructions compare or classify floating-point values:

FCOM/FCOMP/FCOMPP Compare floating point and set x87 FPU condition code
flags.

FUCOM/FUCOMP/FUCOMPP Unordered compare floating point and set x87 FPU 
condition code flags.

FICOM/FICOMP Compare integer and set x87 FPU condition code flags.
FCOMI/FCOMIP Compare floating point and set EFLAGS status flags.
FUCOMI/FUCOMIP Unordered compare floating point and set EFLAGS status

flags.
FTST Test (compare floating point with 0.0).
FXAM Examine.

Comparison of floating-point values differ from comparison of integers because floating-point
values have four (rather than three) mutually exclusive relationships: less than, equal, greater
than, and unordered.

The unordered relationship is true when at least one of the two values being compared is a NaN
or in an unsupported format. This additional relationship is required because, by definition,
NaNs are not numbers, so they cannot have less than, equal, or greater than relationships with
other floating-point values.

The FCOM, FCOMP, and FCOMPP instructions compare the value in register ST(0) with a
floating-point source operand and set the condition code flags (C0, C2, and C3) in the x87 FPU
status word according to the results (see Table 8-6). 
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If an unordered condition is detected (one or both of the values are NaNs or in an undefined
format), a floating-point invalid-operation exception is generated.

The pop versions of the instruction pop the x87 FPU register stack once or twice after the
comparison operation is complete.

The FUCOM, FUCOMP, and FUCOMPP instructions operate the same as the FCOM, FCOMP,
and FCOMPP instructions. The only difference is that with the FUCOM, FUCOMP, and
FUCOMPP instructions, if an unordered condition is detected because one or both of the oper-
ands are QNaNs, the floating-point invalid-operation exception is not generated.

The FICOM and FICOMP instructions also operate the same as the FCOM and FCOMP instruc-
tions, except that the source operand is an integer value in memory. The integer value is auto-
matically converted into an double extended-precision floating-point value prior to making the
comparison. The FICOMP instruction pops the x87 FPU register stack following the compar-
ison operation.

The FTST instruction performs the same operation as the FCOM instruction, except that the
value in register ST(0) is always compared with the value 0.0.

The FCOMI and FCOMIP instructions were introduced into the IA-32 architecture in the P6
family processors. They perform the same comparison as the FCOM and FCOMP instructions,
except that they set the status flags (ZF, PF, and CF) in the EFLAGS register to indicate the
results of the comparison (see Table 8-7) instead of the x87 FPU condition code flags. The
FCOMI and FCOMIP instructions allow condition branch instructions (Jcc) to be executed
directly from the results of their comparison.

Table 8-6.  Setting of x87 FPU Condition Code Flags for Floating-Point Number 

Comparisons

Condition C3 C2 C0

ST(0) > Source Operand 0 0 0

ST(0) < Source Operand 0 0 1

ST(0) = Source Operand 1 0 0

Unordered 1 1 1

Table 8-7.  Setting of EFLAGS Status Flags for Floating-Point Number Comparisons

Comparison Results ZF PF CF

ST0 ! ST(i) 0 0 0

ST0 � ST(i) 0 0 1

ST0   ST(i) 1 0 0

Unordered 1 1 1
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Software can check if the FCOMI and FCOMIP instructions are supported by checking the
processor’s feature information with the CPUID instruction (see “CPUID—CPU Identification”
in Chapter 3, Instruction Set Reference A-M of the IA-32 Intel Architecture Software Developer’s
Manual, Volume 2).

The FUCOMI and FUCOMIP instructions operate the same as the FCOMI and FCOMIP
instructions, except that they do not generate a floating-point invalid-operation exception if the
unordered condition is the result of one or both of the operands being a QNaN. The FCOMIP
and FUCOMIP instructions pop the x87 FPU register stack following the comparison operation.

The FXAM instruction determines the classification of the floating-point value in the ST(0)
register (that is, whether the value is zero, a denormal number, a normal finite number, f, a NaN,
or an unsupported format) or that the register is empty. It sets the x87 FPU condition code flags
to indicate the classification (see “FXAM—Examine” in Chapter 3, Instruction Set Reference
A-M, of the IA-32 Intel Architecture Software Developer’s Manual, Volume 2A). It also sets the
C1 flag to indicate the sign of the value.

8.3.6.1. BRANCHING ON THE X87 FPU CONDITION CODES

The processor does not offer any control-flow instructions that branch on the setting of the
condition code flags (C0, C2, and C3) in the x87 FPU status word. To branch on the state of these
flags, the x87 FPU status word must first be moved to the AX register in the integer unit. The
FSTSW AX (store status word) instruction can be used for this purpose. When these flags are
in the AX register, the TEST instruction can be used to control conditional branching as follows:

1. Check for an unordered result. Use the TEST instruction to compare the contents of the
AX register with the constant 0400H (see Table 8-8). This operation will clear the ZF flag
in the EFLAGS register if the condition code flags indicate an unordered result; otherwise,
the ZF flag will be set. The JNZ instruction can then be used to transfer control (if
necessary) to a procedure for handling unordered operands.

2. Check ordered comparison result. Use the constants given in Table 8-8 in the TEST
instruction to test for a less than, equal to, or greater than result, then use the corresponding
conditional branch instruction to transfer program control to the appropriate procedure or
section of code.

If a program or procedure has been thoroughly tested and it incorporates periodic checks for
QNaN results, then it is not necessary to check for the unordered result every time a comparison
is made.

Table 8-8.  TEST Instruction Constants for Conditional Branching

Order Constant Branch

ST(0) ! Source Operand 4500H JZ

ST(0) � Source Operand 0100H JNZ

ST(0)   Source Operand 4000H JNZ

Unordered 0400H JNZ
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See Section 8.1.3., “Branching and Conditional Moves on Condition Codes”, for another tech-
nique for branching on x87 FPU condition codes.

Some non-comparison x87 FPU instructions update the condition code flags in the x87 FPU
status word. To ensure that the status word is not altered inadvertently, store it immediately
following a comparison operation.

8.3.7. Trigonometric Instructions

The following instructions perform four common trigonometric functions:

FSIN Sine
FCOS Cosine
FSINCOS Sine and cosine
FPTAN Tangent
FPATAN Arctangent

These instructions operate on the top one or two registers of the x87 FPU register stack and they
return their results to the stack. The source operands for the FSIN, FCOS, FSINCOS, and
FPTAN instructions must be given in radians; the source operand for the FPATAN instruction is
given in rectangular coordinate units.

The FSINCOS instruction returns both the sine and the cosine of a source operand value. It oper-
ates faster than executing the FSIN and FCOS instructions in succession.

The FPATAN instruction computes the arctangent of ST(1) divided by ST(0), returning a result
in radians. It is useful for converting rectangular coordinates to polar coordinates.

8.3.8. Pi

When the argument (source operand) of a trigonometric function is within the range of the func-
tion, the argument is automatically reduced by the appropriate multiple of 2S through the same
reduction mechanism used by the FPREM and FPREM1 instructions. The internal value of S
that the x87 FPU uses for argument reduction and other computations is as follows:

S = 0.f 
 22

where:

f = C90FDAA2  2168C234  C

(The spaces in the fraction above indicate 32-bit boundaries.)

This internal S value has a 66-bit mantissa, which is 2 bits more than is allowed in the signifi-
cand of an double extended-precision floating-point value. (Since 66 bits is not an even number
of hexadecimal digits, two additional zeros have been added to the value so that it can be
represented in hexadecimal format. The least-significant hexadecimal digit (C) is thus
1100B, where the two least-significant bits represent bits 67 and 68 of the mantissa.)
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This value of S has been chosen to guarantee no loss of significance in a source operand,
provided the operand is within the specified range for the instruction.

If the results of computations that explicitly use S are to be used in the FSIN, FCOS, FSINCOS,
or FPTAN instructions, the full 66-bit fraction of S should be used. This insures that the results
are consistent with the argument-reduction algorithms that these instructions use. Using a
rounded version of S can cause inaccuracies in result values, which if propagated through
several calculations, might result in meaningless results.

A common method of representing the full 66-bit fraction of S is to separate the value into two
numbers (highS and lowS) that when added together give the value for S shown earlier in this
section with the full 66-bit fraction:

S = highS + lowS

For example, the following two values (given in scientific notation with the fraction in hexadec-
imal and the exponent in decimal) represent the 33 most-significant and the 33 least-significant
bits of the fraction:

highS (unnormalized)= 0.C90FDAA20 * 2+2 

lowS (unnormalized) = 0.42D184698 * 2� 31

These values encoded in the IEEE double-precision floating-point format are as follows:

highS = 400921FB  54400000

lowS�= 3DE0B461  1A600000

(Note that in the IEEE double-precision floating-point format, the exponents are biased (by
1023) and the fractions are normalized.)

Similar versions of S can also be written in double extended-precision floating-point format.

When using this two-part S value in an algorithm, parallel computations should be performed
on each part, with the results kept separate. When all the computations are complete, the two
results can be added together to form the final result.

The complications of maintaining a consistent value of S for argument reduction can be avoided,
either by applying the trigonometric functions only to arguments within the range of the
automatic reduction mechanism, or by performing all argument reductions (down to a magni-
tude less than S/4) explicitly in software.

8.3.9. Logarithmic, Exponential, and Scale

The following instructions provide two different logarithmic functions, an exponential function,
and a scale function.

FYL2X Logarithm
FYL2XP1 Logarithm epsilon
F2XM1 Exponential
FSCALE Scale
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The FYL2X and FYL2XP1 instructions perform two different base 2 logarithmic operations.
The FYL2X instruction computes (y 
 log2x). This operation permits the calculation of the log
of any base using the following equation:

logb x = (1/log2 b) 
 log2 x

The FYL2XP1 instruction computes (y 
 log2(x + 1)). This operation provides optimum accu-
racy for values of x that are close to 0.

The F2XM1 instruction computes (2x ��1). This instruction only operates on source values in
the range �1.0 to +1.0.

The FSCALE instruction multiplies the source operand by a power of 2.

8.3.10. Transcendental Instruction Accuracy

New transcendental instruction algorithms were incorporated into the IA-32 architecture begin-
ning with the Pentium processors. These new algorithms (used in transcendental instructions
FSIN, FCOS, FSINCOS, FPTAN, FPATAN, F2XM1, FYL2X, and FYL2XP1) allow a higher
level of accuracy than was possible in earlier IA-32 processors and x87 math coprocessors. The
accuracy of these instructions is measured in terms of units in the last place (ulp). For a given
argument x, let f(x) and F(x) be the correct and computed (approximate) function values, respec-
tively. The error in ulps is defined to be:

where k is an integer such that 

With the Pentium processor and later IA-32 processors, the worst case error on transcen-
dental functions is less than 1 ulp when rounding to the nearest (even) and less than 1.5 ulps
when rounding in other modes. The functions are guaranteed to be monotonic, with respect to
the input operands, throughout the domain supported by the instruction.

The instructions FYL2X and FYL2XP1 are two operand instructions and are guaranteed to be
within 1 ulp only when y equals 1. When y is not equal to 1, the maximum ulp error is always
within 1.35 ulps in round to nearest mode. (For the two operand functions, monotonicity was
proved by holding one of the operands constant.)

8.3.11. x87 FPU Control Instructions

The following instructions control the state and modes of operation of the x87 FPU. They also
allow the status of the x87 FPU to be examined:

FINIT/FNINIT Initialize x87 FPU
FLDCW Load x87 FPU control word
FSTCW/FNSTCW Store x87 FPU control word
FSTSW/FNSTSW Store x87 FPU status word

error f x� � F x� �–

2
k 63–

---------------------------=

1 2
k–

f x� � 2.�d
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FCLEX/FNCLEX Clear x87 FPU exception flags
FLDENV Load x87 FPU environment
FSTENV/FNSTENV Store x87 FPU environment
FRSTOR Restore x87 FPU state
FSAVE/FNSAVE Save x87 FPU state
FINCSTP Increment x87 FPU register stack pointer
FDECSTP Decrement x87 FPU register stack pointer
FFREE Free x87 FPU register
FNOP No operation
WAIT/FWAIT Check for and handle pending unmasked x87 FPU exceptions

The FINIT/FNINIT instructions initialize the x87 FPU and its internal registers to default
values.

The FLDCW instructions loads the x87 FPU control word register with a value from memory.
The FSTCW/FNSTCW and FSTSW/FNSTSW instructions store the x87 FPU control and status
words, respectively, in memory (or for an FSTSW/FNSTSW instruction in a general-purpose
register).

The FSTENV/FNSTENV and FSAVE/FNSAVE instructions save the x87 FPU environment
and state, respectively, in memory. The x87 FPU environment includes all the x87 FPU’s control
and status registers; the x87 FPU state includes the x87 FPU environment and the data registers
in the x87 FPU register stack. (The FSAVE/FNSAVE instruction also initializes the x87 FPU to
default values, like the FINIT/FNINIT instruction, after it saves the original state of the x87
FPU.) 

The FLDENV and FRSTOR instructions load the x87 FPU environment and state, respectively,
from memory into the x87 FPU. These instructions are commonly used when switching tasks or
contexts.

The WAIT/FWAIT instructions are synchronization instructions. (They are actually mnemonics
for the same opcode.) These instructions check the x87 FPU status word for pending unmasked
x87 FPU exceptions. If any pending unmasked x87 FPU exceptions are found, they are handled
before the processor resumes execution of the instructions (integer, floating-point, or system
instruction) in the instruction stream. The WAIT/FWAIT instructions are provided to allow
synchronization of instruction execution between the x87 FPU and the processor’s integer unit.
See Section 8.6., “x87 FPU Exception Synchronization” for more information on the use of the
WAIT/FWAIT instructions.

8.3.12. Waiting vs. Non-waiting Instructions

All of the x87 FPU instructions except a few special control instructions perform a wait opera-
tion (similar to the WAIT/FWAIT instructions), to check for and handle pending unmasked x87
FPU floating-point exceptions, before they perform their primary operation (such as adding two
floating-point numbers). These instructions are called waiting instructions. Some of the x87
FPU control instructions, such as FSTSW/FNSTSW, have both a waiting and a non-waiting
version. The waiting version (with the “F” prefix) executes a wait operation before it performs
its primary operation; whereas, the non-waiting version (with the “FN” prefix) ignores pending
unmasked exceptions. 
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Non-waiting instructions allow software to save the current x87 FPU state without first handling
pending exceptions or to reset or reinitialize the x87 FPU without regard for pending exceptions.

NOTE

When operating a Pentium or Intel486 processor in MS-DOS compatibility
mode, it is possible (under unusual circumstances) for a non-waiting
instruction to be interrupted prior to being executed to handle a pending x87
FPU exception. The circumstances where this can happen and the resulting
action of the processor are described in Section D.2.1.3., “No-Wait x87 FPU
Instructions Can Get x87 FPU Interrupt in Window”. When operating a P6
family, Pentium 4, or Intel Xeon processor in MS-DOS compatibility mode,
non-waiting instructions can not be interrupted in this way (see Section
D.2.2., “MS-DOS Compatibility Mode in the P6 Family and Pentium 4
Processors”).

8.3.13. Unsupported x87 FPU Instructions

The Intel 8087 instructions FENI and FDISI and the Intel 287 math coprocessor instruction
FSETPM perform no function in the Intel 387 math coprocessor and later IA-32 processors. If
these opcodes are detected in the instruction stream, the x87 FPU performs no specific operation
and no internal x87 FPU states are affected.

8.4. X87 FPU FLOATING-POINT EXCEPTION HANDLING

The x87 FPU detects the six classes of exception conditions described in Section 4.9., “Over-
view of Floating-Point Exceptions”:

• Invalid operation (#I), with two subclasses:

• Stack overflow or underflow (#IS)

• Invalid arithmetic operation (#IA)

• Denormalized operand (#D)

• Divide-by-zero (#Z)

• Numeric overflow (#O)

• Numeric underflow (#U)

• Inexact result (precision) (#P)

Each of the six exception classes has a corresponding flag bit in the x87 FPU status word and a
mask bit in the x87 FPU control word (see Section 8.1.2., “x87 FPU Status Register” and Section
8.1.4., “x87 FPU Control Word”, respectively). In addition, the exception summary (ES) flag in
the status word indicates when one or more unmasked exceptions has been detected. The stack
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fault (SF) flag (also in the status word) distinguishes between the two types of invalid-operation
exceptions.

The mask bits can be set with FLDCW, FRSTOR, or FXRSTOR; they can be read with either
FSTCW/FNSTCW, FSAVE/FNSAVE, or FXSAVE. The flag bits can be read with the
FSTSW/FNSTSW, FSAVE/FNSAVE, or FXSAVE instruction.

NOTE

Section 4.9.1., “Floating-Point Exception Conditions” provides a general
overview of how the IA-32 processor detects and handles the various classes
of floating-point exceptions. This information pertains to x87 FPU as well as
SSE/SSE2/SSE3 extensions. The following sections give specific
information about how the x87 FPU handles floating-point exceptions that
are unique to the x87 FPU.

8.4.1. Arithmetic vs. Non-arithmetic Instructions

When dealing with floating-point exceptions, it is useful to distinguish between arithmetic
instructions and non-arithmetic instructions. Non-arithmetic instructions have no operands
or do not make substantial changes to their operands. Arithmetic instructions do make signifi-
cant changes to their operands; in particular, they make changes that could result in floating-
point exceptions being signaled. Table 8-9 lists the non-arithmetic and arithmetic instructions.
It should be noted that some non-arithmetic instructions can signal a floating-point stack (fault)
exception, but this exception is not the result of an operation on an operand.

Table 8-9.  Arithmetic and Non-arithmetic Instructions

Non-arithmetic Instructions Arithmetic Instructions

FABS F2XM1

FCHS FADD/FADDP

FCLEX FBLD

FDECSTP FBSTP

FFREE FCOM/FCOMP/FCOMPP

FINCSTP FCOS

FINIT/FNINIT FDIV/FDIVP/FDIVR/FDIVRP

FLD (register-to-register) FIADD

FLD (extended format from memory) FICOM/FICOMP

FLD constant FIDIV/FIDIVR

FLDCW FILD

FLDENV FIMUL

FNOP FIST/FISTP1
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8.5. X87 FPU FLOATING-POINT EXCEPTION CONDITIONS

The following sections describe the various conditions that cause a floating-point exception to
be generated by the x87 FPU and the masked response of the x87 FPU when these conditions
are detected. Chapter 3, Instruction Set Reference A-M and Chapter 4, Instruction Set Reference
N-Z of the IA-32 Intel Architecture Software Developer’s Manual, Volumes 2A & 2B list the
floating-point exceptions that can be signaled for each floating-point instruction.

See Section 4.9.2., “Floating-Point Exception Priority” for a description of the rules for exception
precedence when more than one floating-point exception condition is detected for an instruction.

8.5.1. Invalid Operation Exception

The floating-point invalid-operation exception occurs in response to two sub-classes of operations:

• Stack overflow or underflow (#IS)

• Invalid arithmetic operand (#IA)

FRSTOR FISUB/FISUBR

FSAVE/FNSAVE FLD (single and double)

FST/FSTP (register-to-register) FMUL/FMULP

FSTP (extended format to memory) FPATAN

FSTCW/FNSTCW FPREM/FPREM1

FSTENV/FNSTENV FPTAN

FSTSW/FNSTSW FRNDINT

WAIT/FWAIT FSCALE

FXAM FSIN

FXCH FSINCOS

FSQRT

FST/FSTP (single and double)

FSUB/FSUBP/FSUBR/FSUBRP

FTST

FUCOM/FUCOMP/FUCOMPP

FXTRACT

FYL2X/FYL2XP1

NOTES

1. The FISTTP instruction in SSE3 is an arithmetic x87 FPU instruction.

Table 8-9.  Arithmetic and Non-arithmetic Instructions (Contd.)

Non-arithmetic Instructions Arithmetic Instructions
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The flag for this exception (IE) is bit 0 of the x87 FPU status word, and the mask bit (IM) is bit
0 of the x87 FPU control word. The stack fault flag (SF) of the x87 FPU status word indicates
the type of operation that caused the exception. When the SF flag is set to 1, a stack operation
has resulted in stack overflow or underflow; when the flag is cleared to 0, an arithmetic instruc-
tion has encountered an invalid operand. Note that the x87 FPU explicitly sets the SF flag when
it detects a stack overflow or underflow condition, but it does not explicitly clear the flag when
it detects an invalid-arithmetic-operand condition. As a result, the state of the SF flag can be 1
following an invalid-arithmetic-operation exception, if it was not cleared from the last time a
stack overflow or underflow condition occurred. See Section 8.1.2.4., “Stack Fault Flag”, for
more information about the SF flag.

8.5.1.1. STACK OVERFLOW OR UNDERFLOW EXCEPTION (#IS)

The x87 FPU tag word keeps track of the contents of the registers in the x87 FPU register stack
(see Section 8.1.6., “x87 FPU Tag Word”). It then uses this information to detect two different
types of stack faults:

• Stack overflow—an instruction attempts to load a non-empty x87 FPU register from
memory. A non-empty register is defined as a register containing a zero (tag value of 01), a
valid value (tag value of 00), or a special value (tag value of 10).

• Stack underflow—an instruction references an empty x87 FPU register as a source
operand, including attempting to write the contents of an empty register to memory. An
empty register has a tag value of 11.

NOTE

The term stack overflow originates from the situation where the program has
loaded (pushed) eight values from memory onto the x87 FPU register stack
and the next value pushed on the stack causes a stack wraparound to a register
that already contains a value. The term stack underflow originates from the
opposite situation. Here, a program has stored (popped) eight values from the
x87 FPU register stack to memory and the next value popped from the stack
causes stack wraparound to an empty register.

When the x87 FPU detects stack overflow or underflow, it sets the IE flag (bit 0) and the SF flag
(bit 6) in the x87 FPU status word to 1. It then sets condition-code flag C1 (bit 9) in the x87 FPU
status word to 1 if stack overflow occurred or to 0 if stack underflow occurred. 

If the invalid-operation exception is masked, the x87 FPU returns the floating point, integer, or
packed decimal integer indefinite value to the destination operand, depending on the instruction
being executed. This value overwrites the destination register or memory location specified by
the instruction.

If the invalid-operation exception is not masked, a software exception handler is invoked (see
Section 8.7., “Handling x87 FPU Exceptions in Software”) and the top-of-stack pointer (TOP)
and source operands remain unchanged.
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8.5.1.2. INVALID ARITHMETIC OPERAND EXCEPTION (#IA)

The x87 FPU is able to detect a variety of invalid arithmetic operations that can be coded in a
program. These operations are listed in Table 8-10. (This list includes the invalid operations
defined in IEEE Standard 754.)

When the x87 FPU detects an invalid arithmetic operand, it sets the IE flag (bit 0) in the x87
FPU status word to 1. If the invalid-operation exception is masked, the x87 FPU then returns an
indefinite value or QNaN to the destination operand and/or sets the floating-point condition
codes as shown in Table 8-10. If the invalid-operation exception is not masked, a software
exception handler is invoked (see Section 8.7., “Handling x87 FPU Exceptions in Software”)
and the top-of-stack pointer (TOP) and source operands remain unchanged.

Table 8-10.  Invalid Arithmetic Operations and the Masked Responses to Them

Condition Masked Response

Any arithmetic operation on an operand that is in 
an unsupported format.

Return the QNaN floating-point indefinite value to 
the destination operand.

Any arithmetic operation on a SNaN. Return a QNaN to the destination operand (see 
Table 4-7).

Ordered compare and test operations: one or both 
operands are NaNs.

Set the condition code flags (C0, C2, and C3) in the 
x87 FPU status word or the CF, PF, and ZF flags in 
the EFLAGS register to 111B (not comparable).

Addition: operands are opposite-signed infinities.
Subtraction: operands are like-signed infinities.

Return the QNaN floating-point indefinite value to 
the destination operand.

Multiplication: f  by 0; 0 by f . Return the QNaN floating-point indefinite value to 
the destination operand.

Division: f  by  f ; 0 by 0. Return the QNaN floating-point indefinite value to 
the destination operand.

Remainder instructions FPREM, FPREM1: 
modulus (divisor) is 0 or dividend is f .

Return the QNaN floating-point indefinite; clear 
condition code flag C2 to 0.

Trigonometric instructions FCOS, FPTAN, FSIN, 
FSINCOS: source operand is f .

Return the QNaN floating-point indefinite; clear 
condition code flag C2 to 0.

FSQRT: negative operand (except FSQRT (–0) = –
0); FYL2X: negative operand (except FYL2X (–0) = 
–f); FYL2XP1: operand more negative than –1.

Return the QNaN floating-point indefinite value to 
the destination operand.

FBSTP: Converted value cannot be represented in 
18 decimal digits, or source value is an SNaN, 
QNaN, r f , or in an unsupported format.

Store packed BCD integer indefinite value in the 
destination operand.

FIST/FISTP: Converted value exceeds 
representable integer range of the destination 
operand, or source value is an SNaN, QNaN, rf, 
or in an unsupported format.

Store integer indefinite value in the destination 
operand.

FXCH: one or both registers are tagged empty. Load empty registers with the QNaN floating-point 
indefinite value, then perform the exchange.
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Normally, when one or both of the source operands is a QNaN (and neither is an SNaN or in an
unsupported format), an invalid-operand exception is not generated. An exception to this rule is
most of the compare instructions (such as the FCOM and FCOMI instructions) and the floating-
point to integer conversion instructions (FIST/FISTP and FBSTP). With these instructions, a
QNaN source operand will generate an invalid-operand exception.

8.5.2. Denormal Operand Exception (#D)

The x87 FPU signals the denormal-operand exception under the following conditions:

• If an arithmetic instruction attempts to operate on a denormal operand (see Section
4.8.3.2., “Normalized and Denormalized Finite Numbers”).

• If an attempt is made to load a denormal single-precision or double-precision floating-
point value into an x87 FPU register. (If the denormal value being loaded is a double
extended-precision floating-point value, the denormal-operand exception is not reported.)

The flag (DE) for this exception is bit 1 of the x87 FPU status word, and the mask bit (DM) is
bit 1 of the x87 FPU control word.

When a denormal-operand exception occurs and the exception is masked, the x87 FPU sets the
DE flag, then proceeds with the instruction. The denormal operand in single- or double-preci-
sion floating-point format is automatically normalized when converted to the double extended-
precision floating-point format. Subsequent operations will benefit from the additional precision
of the internal double extended-precision floating-point format.

When a denormal-operand exception occurs and the exception is not masked, the DE flag is set
and a software exception handler is invoked (see Section 8.7., “Handling x87 FPU Exceptions
in Software”). The top-of-stack pointer (TOP) and source operands remain unchanged.

For additional information about the denormal-operation exception, see Section 4.9.1.2.,
“Denormal Operand Exception (#D)”.

8.5.3. Divide-By-Zero Exception (#Z)

The x87 FPU reports a floating-point divide-by-zero exception whenever an instruction
attempts to divide a finite non-zero operand by 0. The flag (ZE) for this exception is bit 2 of the
x87 FPU status word, and the mask bit (ZM) is bit 2 of the x87 FPU control word. The FDIV,
FDIVP, FDIVR, FDIVRP, FIDIV, and FIDIVR instructions and the other instructions that
perform division internally (FYL2X and FXTRACT) can report the divide-by-zero exception. 

When a divide-by-zero exception occurs and the exception is masked, the x87 FPU sets the ZE
flag and returns the values shown in Table 8-10. If the divide-by-zero exception is not masked,
the ZE flag is set, a software exception handler is invoked (see Section 8.7., “Handling x87 FPU
Exceptions in Software”), and the top-of-stack pointer (TOP) and source operands remain
unchanged.
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8.5.4. Numeric Overflow Exception (#O)

The x87 FPU reports a floating-point numeric overflow exception (#O) whenever the rounded
result of an arithmetic instruction exceeds the largest allowable finite value that will fit into the
floating-point format of the destination operand. (See Section 4.9.1.4., “Numeric Overflow
Exception (#O)” for additional information about the numeric overflow exception.)

When using the x87 FPU, numeric overflow can occur on arithmetic operations where the result
is stored in an x87 FPU data register. It can also occur on store floating-point operations (using
the FST and FSTP instructions), where a within-range value in a data register is stored in
memory in a single-precision or double-precision floating-point format. The numeric overflow
exception cannot occur when storing values in an integer or BCD integer format. Instead, the
invalid-arithmetic-operand exception is signaled.

The flag (OE) for the numeric-overflow exception is bit 3 of the x87 FPU status word, and the
mask bit (OM) is bit 3 of the x87 FPU control word. 

When a numeric-overflow exception occurs and the exception is masked, the x87 FPU sets the
OE flag and returns one of the values shown in Table 4-10. The value returned depends on the
current rounding mode of the x87 FPU (see Section 8.1.4.3., “Rounding Control Field”).

The action that the x87 FPU takes when numeric overflow occurs and the numeric-overflow
exception is not masked, depends on whether the instruction is supposed to store the result in
memory or on the register stack.

• Destination is a memory location. The OE flag is set and a software exception handler is
invoked (see Section 8.7., “Handling x87 FPU Exceptions in Software”). The top-of-stack
pointer (TOP) and source and destination operands remain unchanged. Because the data in
the stack is in double extended-precision format, the exception handler has the option
either of re-executing the store instruction after proper adjustment of the operand or of
rounding the significand on the stack to the destination's precision as the standard requires.
The exception handler should ultimately store a value into the destination location in
memory if the program is to continue.

• Destination is the register stack. The significand of the result is rounded according to
current settings of the precision and rounding control bits in the x87 FPU control word and
the exponent of the result is adjusted by dividing it by 224576. (For instructions not affected
by the precision field, the significand is rounded to double-extended precision.) The
resulting value is stored in the destination operand. Condition code bit C1 in the x87 FPU

Table 8-11.  Divide-By-Zero Conditions and the Masked Responses to Them

Condition Masked Response

Divide or reverse divide operation 
with a 0 divisor.

Returns an f signed with the exclusive OR of the sign of the two 
operands to the destination operand.

FYL2X instruction. Returns an f signed with the opposite sign of the non-zero 
operand to the destination operand.

FXTRACT instruction. ST(1) is set to –f; ST(0) is set to 0 with the same sign as the 
source operand.
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status word (called in this situation the “round-up bit”) is set if the significand was rounded
upward and cleared if the result was rounded toward 0. After the result is stored, the OE
flag is set and a software exception handler is invoked. The scaling bias value 24,576 is
equal to 3 
�213. Biasing the exponent by 24,576 normally translates the number as nearly
as possible to the middle of the double extended-precision floating-point exponent range
so that, if desired, it can be used in subsequent scaled operations with less risk of causing
further exceptions.

When using the FSCALE instruction, massive overflow can occur, where the result is too
large to be represented, even with a bias-adjusted exponent. Here, if overflow occurs again,
after the result has been biased, a properly signed f is stored in the destination operand.

8.5.5. Numeric Underflow Exception (#U)

The x87 FPU detects a floating-point numeric underflow condition whenever the rounded result
of an arithmetic instruction is tiny; that is, less than the smallest possible normalized, finite value
that will fit into the floating-point format of the destination operand. (See Section 4.9.1.5.,
“Numeric Underflow Exception (#U)” for additional information about the numeric underflow
exception.)

Like numeric overflow, numeric underflow can occur on arithmetic operations where the result
is stored in an x87 FPU data register. It can also occur on store floating-point operations (with
the FST and FSTP instructions), where a within-range value in a data register is stored in
memory in the smaller single-precision or double-precision floating-point formats. A numeric
underflow exception cannot occur when storing values in an integer or BCD integer format,
because a tiny value is always rounded to an integral value of 0 or 1, depending on the rounding
mode in effect.

The flag (UE) for the numeric-underflow exception is bit 4 of the x87 FPU status word, and the
mask bit (UM) is bit 4 of the x87 FPU control word.

When a numeric-underflow condition occurs and the exception is masked, the x87 FPU
performs the operation described in Section 4.9.1.5., “Numeric Underflow Exception (#U)”.

When the exception is not masked, the action of the x87 FPU depends on whether the instruction
is supposed to store the result in a memory location or on the x87 FPU resister stack.

• Destination is a memory location. (Can occur only with a store instruction.) The UE flag
is set and a software exception handler is invoked (see Section 8.7., “Handling x87 FPU
Exceptions in Software”). The top-of-stack pointer (TOP) and source and destination
operands remain unchanged, and no result is stored in memory. 
Because the data in the stack is in double extended-precision format, the exception handler
has the option either of re-exchanges the store instruction after proper adjustment of the
operand or of rounding the significand on the stack to the destination's precision as the
standard requires. The exception handler should ultimately store a value into the
destination location in memory if the program is to continue.

• Destination is the register stack. The significand of the result is rounded according to
current settings of the precision and rounding control bits in the x87 FPU control word and
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the exponent of the result is adjusted by multiplying it by 224576. (For instructions not
affected by the precision field, the significand is rounded to double extended precision.)
The resulting value is stored in the destination operand. Condition code bit C1 in the x87
FPU status register (acting here as a “round-up bit”) is set if the significand was rounded
upward and cleared if the result was rounded toward 0. After the result is stored, the UE
flag is set and a software exception handler is invoked. The scaling bias value 24,576 is the
same as is used for the overflow exception and has the same effect, which is to translate the
result as nearly as possible to the middle of the double extended-precision floating-point
exponent range.

When using the FSCALE instruction, massive underflow can occur, where the result is too
tiny to be represented, even with a bias-adjusted exponent. Here, if underflow occurs again
after the result has been biased, a properly signed 0 is stored in the destination operand.

8.5.6. Inexact-Result (Precision) Exception (#P)

The inexact-result exception (also called the precision exception) occurs if the result of an oper-
ation is not exactly representable in the destination format. (See Section 4.9.1.6., “Inexact-
Result (Precision) Exception (#P)” for additional information about the numeric overflow
exception.) Note that the transcendental instructions (FSIN, FCOS, FSINCOS, FPTAN,
FPATAN, F2XM1, FYL2X, and FYL2XP1) by nature produce inexact results.

The inexact-result exception flag (PE) is bit 5 of the x87 FPU status word, and the mask bit (PM)
is bit 5 of the x87 FPU control word. 

If the inexact-result exception is masked when an inexact-result condition occurs and a numeric
overflow or underflow condition has not occurred, the x87 FPU handles the exception as
describe in Section 4.9.1.6., “Inexact-Result (Precision) Exception (#P)”, with one additional
action. The C1 (round-up) bit in the x87 FPU status word is set to indicate whether the inexact
result was rounded up (C1 is set) or “not rounded up” (C1 is cleared). In the “not rounded up”
case, the least-significant bits of the inexact result are truncated so that the result fits in the desti-
nation format.

If the inexact-result exception is not masked when an inexact result occurs and numeric over-
flow or underflow has not occurred, the x87 FPU handles the exception as described in the
previous paragraph and, in addition, invokes a software exception handler.

If an inexact result occurs in conjunction with numeric overflow or underflow, the x87 FPU
carries out one of the following operations:

• If an inexact result occurs in conjunction with masked overflow or underflow, the OE or
UE flag and the PE flag are set and the result is stored as described for the overflow or
underflow exceptions (see Section 8.5.4., “Numeric Overflow Exception (#O)” or Section
8.5.5., “Numeric Underflow Exception (#U)”). If the inexact result exception is unmasked,
the x87 FPU also invokes a software exception handler.

• If an inexact result occurs in conjunction with unmasked overflow or underflow and the
destination operand is a register, the OE or UE flag and the PE flag are set, the result is
stored as described for the overflow or underflow exceptions (see Section 8.5.4., “Numeric
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Overflow Exception (#O)” or Section 8.5.5., “Numeric Underflow Exception (#U)”, and a
software exception handler is invoked.

If an unmasked numeric overflow or underflow exception occurs and the destination operand is
a memory location (which can happen only for a floating-point store), the inexact-result condi-
tion is not reported and the C1 flag is cleared.

8.6. X87 FPU EXCEPTION SYNCHRONIZATION

Because the integer unit and x87 FPU are separate execution units, it is possible for the
processor to execute floating-point, integer, and system instructions concurrently. No special
programming techniques are required to gain the advantages of concurrent execution. (Floating-
point instructions are placed in the instruction stream along with the integer and system instruc-
tions.) However, concurrent execution can cause problems for floating-point exception
handlers. 

This problem is related to the way the x87 FPU signals the existence of unmasked floating-point
exceptions. (Special exception synchronization is not required for masked floating-point excep-
tions, because the x87 FPU always returns a masked result to the destination operand.) 

When a floating-point exception is unmasked and the exception condition occurs, the x87 FPU
stops further execution of the floating-point instruction and signals the exception event. On the
next occurrence of a floating-point instruction or a WAIT/FWAIT instruction in the instruction
stream, the processor checks the ES flag in the x87 FPU status word for pending floating-point
exceptions. If floating-point exceptions are pending, the x87 FPU makes an implicit call (traps)
to the floating-point software exception handler. The exception handler can then execute
recovery procedures for selected or all floating-point exceptions.

Synchronization problems occur in the time between the moment when the exception is signaled
and when it is actually handled. Because of concurrent execution, integer or system instructions
can be executed during this time. It is thus possible for the source or destination operands for a
floating-point instruction that faulted to be overwritten in memory, making it impossible for the
exception handler to analyze or recover from the exception.

To solve this problem, an exception synchronizing instruction (either a floating-point instruction
or a WAIT/FWAIT instruction) can be placed immediately after any floating-point instruction
that might present a situation where state information pertaining to a floating-point exception
might be lost or corrupted. Floating-point instructions that store data in memory are prime candi-
dates for synchronization. For example, the following three lines of code have the potential for
exception synchronization problems:

FILD COUNT ; Floating-point instruction

INC COUNT  ; Integer instruction

FSQRT      ; Subsequent floating-point instruction

In this example, the INC instruction modifies the source operand of the floating-point instruc-
tion, FILD. If an exception is signaled during the execution of the FILD instruction, the INC
instruction would be allowed to overwrite the value stored in the COUNT memory location
before the floating-point exception handler is called. With the COUNT variable modified, the
floating-point exception handler would not be able to recover from the error.
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Rearranging the instructions, as follows, so that the FSQRT instruction follows the FILD
instruction, synchronizes floating-point exception handling and eliminates the possibility of the
COUNT variable being overwritten before the floating-point exception handler is invoked.

FILD COUNT ; Floating-point instruction

FSQRT      ; Subsequent floating-point instruction synchronizes

           ; any exceptions generated by the FILD instruction.

INC COUNT  ; Integer instruction

The FSQRT instruction does not require any synchronization, because the results of this instruc-
tion are stored in the x87 FPU data registers and will remain there, undisturbed, until the next
floating-point or WAIT/FWAIT instruction is executed. To absolutely insure that any exceptions
emanating from the FSQRT instruction are handled (for example, prior to a procedure call), a
WAIT instruction can be placed directly after the FSQRT instruction.

Note that some floating-point instructions (non-waiting instructions) do not check for pending
unmasked exceptions (see Section 8.3.11., “x87 FPU Control Instructions”). They include the
FNINIT, FNSTENV, FNSAVE, FNSTSW, FNSTCW, and FNCLEX instructions. When an
FNINIT, FNSTENV, FNSAVE, or FNCLEX instruction is executed, all pending exceptions are
essentially lost (either the x87 FPU status register is cleared or all exceptions are masked). The
FNSTSW and FNSTCW instructions do not check for pending interrupts, but they do not
modify the x87 FPU status and control registers. A subsequent “waiting” floating-point instruc-
tion can then handle any pending exceptions.

8.7. HANDLING X87 FPU EXCEPTIONS IN SOFTWARE

The x87 FPU in Pentium and later IA-32 processors provides two different modes of operation for
invoking a software exception handler for floating-point exceptions: native mode and MS-DOS
compatibility mode. The mode of operation is selected with the NE flag of control register CR0.
(See Chapter 2, System Architecture Overview, in the IA-32 Intel Architecture Software Devel-
oper’s Manual, Volume 3, for more information about the NE flag.)

8.7.1. Native Mode

The native mode for handling floating-point exceptions is selected by setting the NE flag in
control register CR0 to 1. In this mode, if the x87 FPU detects an exception condition while
executing a floating-point instruction and the exception is unmasked (the mask bit for the excep-
tion is cleared), the x87 FPU sets the flag for the exception and the ES flag in the x87 FPU status
word. It then invokes the software exception handler through the floating-point-error exception
(#MF, vector 16), immediately before execution of any of the following instructions in the
processor’s instruction stream:

• The next floating-point instruction, unless it is one of the non-waiting instructions
(FNINIT, FNCLEX, FNSTSW, FNSTCW, FNSTENV, and FNSAVE). 

• The next WAIT/FWAIT instruction.

• The next MMX instruction.
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If the next floating-point instruction in the instruction stream is a non-waiting instruction, the
x87 FPU executes the instruction without invoking the software exception handler.

8.7.2. MS-DOS* Compatibility Mode

If the NE flag in control register CR0 is set to 0, the MS-DOS compatibility mode for handling
floating-point exceptions is selected. In this mode, the software exception handler for floating-
point exceptions is invoked externally using the processor’s FERR#, INTR, and IGNNE# pins.
This method of reporting floating-point errors and invoking an exception handler is provided to
support the floating-point exception handling mechanism used in PC systems that are running
the MS-DOS or Windows* 95 operating system.

The MS-DOS compatibility mode is typically used as follows to invoke the floating-point
exception handler:

1. If the x87 FPU detects an unmasked floating-point exception, it sets the flag for the
exception and the ES flag in the x87 FPU status word.

2. If the IGNNE# pin is deasserted, the x87 FPU then asserts the FERR# pin either immedi-
ately, or else delayed (deferred) until just before the execution of the next waiting floating-
point instruction or MMX instruction. Whether the FERR# pin is asserted immediately or
delayed depends on the type of processor, the instruction, and the type of exception.

3. If a preceding floating-point instruction has set the exception flag for an unmasked x87
FPU exception, the processor freezes just before executing the next WAIT instruction,
waiting floating-point instruction, or MMX instruction. Whether the FERR# pin was
asserted at the preceding floating-point instruction or is just now being asserted, the
freezing of the processor assures that the x87 FPU exception handler will be invoked
before the new floating-point (or MMX) instruction gets executed.

4. The FERR# pin is connected through external hardware to IRQ13 of a cascaded, program-
mable interrupt controller (PIC). When the FERR# pin is asserted, the PIC is programmed
to generate an interrupt 75H.

5. The PIC asserts the INTR pin on the processor to signal the interrupt 75H.

6. The BIOS for the PC system handles the interrupt 75H by branching to the interrupt 2
(NMI) interrupt handler.

7. The interrupt 2 handler determines if the interrupt is the result of an NMI interrupt or a
floating-point exception.

8. If a floating-point exception is detected, the interrupt 2 handler branches to the floating-
point exception handler.

If the IGNNE# pin is asserted, the processor ignores floating-point error conditions. This pin is
provided to inhibit floating-point exceptions from being generated while the floating-point
exception handler is servicing a previously signaled floating-point exception.
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Appendix D, Guidelines for Writing x87 FPU Exception Handlers, describes the MS-DOS
compatibility mode in much greater detail. This mode is somewhat more complicated in the
Intel486 and Pentium processor implementations, as described in Appendix D.

8.7.3. Handling x87 FPU Exceptions in Software

Section 4.9.3., “Typical Actions of a Floating-Point Exception Handler” shows actions that may
be carried out by a floating-point exception handler. The state of the x87 FPU can be saved with
the FSTENV/FNSTENV or FSAVE/FNSAVE instructions (see Section 8.1.9., “Saving the x87
FPU’s State with the FSTENV/FNSTENV and FSAVE/FNSAVE Instructions”). 

If the faulting floating-point instruction is followed by one or more non-floating-point instruc-
tions, it may not be useful to re-execute the faulting instruction. See Section 8.6., “x87 FPU
Exception Synchronization”, for more information on synchronizing floating-point exceptions.

In cases where the handler needs to restart program execution with the faulting instruction, the
IRET instruction cannot be used directly. The reason for this is that because the exception is not
generated until the next floating-point or WAIT/FWAIT instruction following the faulting
floating-point instruction, the return instruction pointer on the stack may not point to the faulting
instruction. To restart program execution at the faulting instruction, the exception handler must
obtain a pointer to the instruction from the saved x87 FPU state information, load it into the
return instruction pointer location on the stack, and then execute the IRET instruction.

See Section D.3.4., “x87 FPU Exception Handling Examples”, for general examples of floating-
point exception handlers and for specific examples of how to write a floating-point exception
handler when using the MS-DOS compatibility mode.


