
TRANSCENDENTAL 
NUMBER THEORY 

ALAN BAKER F.R.S. 

Fellow of Trinity College, Cambridge 
Professor of Pure Mathematics, University of Cambridge 

CAMBRIDGE UNIVERSITY PRESS 



J 
Published by tho RynrlioK or t.hn (",unhrirl~n UnivorHit.y Pross 

Bentley HouHo, 2011 EuKt.on Ho11d, l.oudou NWl 2DB 
American Branch: 32 Et~.~<(, li7th Hl.l'nnt, Nr•w York, N.Y.I0022 

© Cambridge UniwrKit.y l'roKR 1975 

Library of Congress Catalogutl Card Number: 74-82591 

ISBN: 0 521 20461 5 

First published 1975 

Printed in Great Britain 
at the University Printing House, Cambridge 

(Euan Phillips, University Printer) 



CONTENTS 

Preface 

1 The origins 
1 Liouville's theorem 

2 Transcendence of e 

3 Lindemann's theorem 

2 Linear forms in logarithms 
1 Introduction 

2 Corollaries 

3 Notation 

4 The auxiliary function 

5 Proof of main theorem 

3 Lower bounds for linear forms 
1 Introduction 

2 Preliminaries 

3 The auxiliary function 

4 Proof of main theorem 

4. Diophantine equations 
1 Introduction 

2 The Thue equation 

3 The hyperelliptic equation 

4 Curves of genus 1 

5 Quantitative bounds 

5 Class numbers of imaginary quadratic fields 
1 Introduction 

2 £-functions 

3 Limit formula 

4 Class number 1 

5 Class number 2 

page 



vi CONTENTS 

6 Elliptic functions 
1 Introduction ]Jti!Jf! lili 

'2 Corollaries !)() 

3 Linear equations I)~ 

4 The auxiliary function 58 

5 Proof of main theorem 60 

6 Periods and quasi-periods 61 

7 Rational approximations to algebraic numbers 
1 Introduction 66 

2 Wronskians 69 

3 The index 69 

4 A combinatorial lemma 73 

5 Grids 74 

6 The auxiliary polynomial 75 

7 Successive minima 76 

8 Comparison of minima 79 

9 Exterior algebra 81 

10 Proof of main theorem 82 

8 Mahler's classification 
1 Introduction 85 

2 A-numbers 87 

3 Algebraic dependence 88 

4 Heights of polynomials 89 

5 S-numbers 90 

6 U-numbers 90 

7 T-numbers 92 

9 Metrical theory 
1 Introduction 95 

2 Zeros of polynomials 96 

3 Null sets 98 

4 Intersections of intervals 99 

5 Proof of main theorem 100 

10 The exponential function 
1 Introduction 103 



CONTENTS vii 

2 Fundamental polynomials page 104 
3 Proof of main theorem 108 

11 The Siegel-Shidlovsky theorems 
1 Introduction 109 

2 Basic construction 111 

3 Further lemmas 114 

4 Proof of main theorem 115 

12 Algebraic independence 
1 Introduction 118 

2 Exponential polynomials 120 

3 Heights 122 

4 Algebraic criterion 124 

5 Main arguments 125 

Bibliography 129 

Original papers 130 

Index 145 





PREFACE 

Fermat, Euler, Lagrange, Legendre ... introitum ad penetralia huius 
divinae scientiae aperuerunt, quantisque divitiis abundent patefecerunt 

Gauss, Disquisitiones Arithmeticae 

The study of transcendental numbers, springing from such diverse 
sources as the ancient Greek question concerning the squaring of the 
circle, the rudimentary researches of Liouville and Cantor, Hermite's 
investigations on the exponential function and the seventh of Hilbert's 
famous list of 23 problems, has now developed into a fertile and 
extensive theory, enriching widespread branches of mathematics; and 
the time has seemed opportune to prepare a systematic treatise. My 
aim has been to provide a comprehensive account of the recent major 
discoveries in the field; the text includes, more especially, expositions 
of the latest theories relating to linear forms in the logarithms of 
algebraic numbers, of Schmidt's generalization of the Thue-Siegel
Roth theorem, of Shidlovsky's work on Siegel's E-functions and of 
Sprindzuk's solution to the Mahler conjecture. Classical aspects of the 
subject are discussed in the course of the narrative; in particular, to 
facilitate the acquisition of a true historical perspective, a survey of 
the theory as it existed at about the turn of the century is given at the 
b~ginning. Proofs in the subject tend, as will be appreciated, to be 
long and intricate, and thus it has been necessary to select for detailed 
treatment only the most fundamental results; moreover, generally 
speaking, emphasis has been placed on arguments which have led to 
the strongest propositions known to date or have yielded the widest 
application. Nevertheless, it is hoped that adequate references have 
been included to associated works. 

Notwithstanding its long history, it will be apparent that the theory 
of transcendental num hers bears a youthful countenance. Many topics 
would certainly benefit by deeper studies and several famous long
standing problems remain open. As exam pies, one need mention only 
the celebrated conjectures concerning the algebraic independence of 
e and 1T and the transcendence of Euler's constant y, the solution to 
either of which would ropresent a major advance. If this book should 

ix 
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play some small role in promoting future progress, the author will ')(' 
well satisfied. 

The text has arisen from numerous lectures delivered in CamhridgP, 
America and elsewhere, and it has also formed the substance of an 
Adams Prize essay. 

I am grateful to Dr D. W. Masser for his kind assistance in check
ing the proofs, and also to the Cambridge University Press for the 
care they have taken with the printing. 

Cambridge, 1974 A. B. 
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THE ORIGINS 

1. Liouville's theorem 
The theory of transcendental numbers was originated by Liouville in 
his famous memoirt of 1844 in which he obtained, for the first time, 
a class, tres-etendue, as it was described in the title of the paper, of 
numbers that satisfy no algebraic equation with integer coefficients. 
Some isolated problems pertaining to the subject, however, had been 
formulated long before this date, and the closely related study of 
irrational numbers had constituted a major focus of attention for 
at least a century preceding. Indeed, by 1744, Euler had already 
established the irrationality of e, and, by 1761, Lambert had con
firmed the irrationality of 1T. Moreover, the early studies of continued 
fractions had revealed several basic features concerning the approxi
mation of irrational numbers by rationals. It was known, for instance, 
that for any irrational a there exists an infinite sequence of rationals 
pfq (q > 0) such thatt Ja- pjqJ < 1fq2 , and it was known also that the 
continued fraction of a quadratic irrational is ultimately periodic, 
whence there exists c = c(a) > 0 such that Ja-pjqJ > cfq2 for all 
rationals pjq (q > 0). Liouville observed that a result of the latter kind 
holds more generally, and that there exists in fact a limit to the 
accuracy with which any algebraic number, not itself rational, can be 
approximated by rationals. It was this observation that provided the 
first practical criterion whereby transcendental numbers could be 
constructed. 

Theorem 1.1. For any algebraic number a with degree n > 1, there 
exists c = c(a) > 0 such that Ja- pfqJ > cfqn for all rationals pfq (q > 0). 

The theorem follows almost at once from the definition of an 
algebraic number. A real or complex number is said to be algebraic if 
it is a zero of a polynomial with integer coefficients; every algebraic 

t O.R. 18 (1844), 883-5, 910-11; J. Math. pures appl. 16 ( 1851), 133-42. For abbrevia-
tions see page 130. 

t This is in fact easily verified; for any integer Q > 1, two of the Q + 1 numbers 1, 
{qa:} (0 ~ q < Q), whore {qa:} denotes the fractional part of qrx, lie in one of the Q 
subintervals of length 1/Q into which [0, I] can bo divided, and their difference has 
tho form qa -JI. 

[ I l 



2 THE ORIGINS 

number ~ is the zero of some such irreduciblet polynomial, Hay /', 
unique up to a constant multiple, and the degree of~ is defined aH t.lw 
degree of P. It suffices to prove the theorem when~ is real; in this caHc, 
for any rational pfq (q > 0), we have by the mean value theorem: 

-P(pfq) = P(~) -P(pfq) = (~-pfq)P'(s) 

forsomef,betweenpfqand~. Clearlyonecanassumethat lcc:-pfql < 1, 
for the result would otherwise be valid trivially; then lsi < 1 + 1~1 and 
thus IP'(s)l < 1/c for some c = c(~) > 0; hence 

1~-pfql > c IP(pfq)!. 

But, since P is irreducible, we have P(pfq) =1= 0, and the integer 
!<f"P(pfq)! is therefore at least 1; the theorem follows. Note that one 
can easily give an explicit value for c; in fact one can take 

c-1 = n2(1 + l~l)n-1 H, 

where H denotes the height of~. that is, the maximum of the absolute 
values of the coefficients of P. 

A real or complex number that is not algebraic is said to be tran
scendental. In view of Theorem 1.t, an obvious instance of such a 

Cl) 

number is given by s = ~ to-n 1• For if we write 
n=l 

i 
Pi= 10i' ~ to-n!, 

n=l 
qj = t0i1 (j = t, 2, ... ), 

then p1, q1 are relatively prime rational integers and we have 

Cl) 

Is -pifqil = ~ to-nr 
n=i+l 

< to-Ci+~>! (t + to-1 + to-2 + ... ) = ljqji-1 < qji. 

Many other transcendental numbers can be specified on the basis of 
Liouville's theorem; indeed any non-terminating decimal in which 
there occur sufficiently long blocks of zeros, or any continued fraction 
in which the partial quotients increase sufficiently rapidly, provides 
an example. Numbers of this kind, that is real s which possess a 
sequence of distinct rational approximations Pnfqn (n = 1, 2, ... ) such 
that Is -Pnfqnl < 1fcrnn, where limsupw" = oo, have been termed 
Liouville numbers; and, of course, these are transcendental. But other, 

t That is, doos not factorize over the integerl'l or, oquivalontly, by Gauss' lemma, 
over t.he rationo.IH. 
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less obvious, applications of Liouville's idea to the construction of 
transcendental numbers have been described; in particular, Maillett 
used an extension of Theorem 1.1 concerning approximations by 
quadratic irrationals to establish the transcendence of a remarkable 
class of quasi-periodic continued fractions. t 

In 1874, Cantor introduced the concept of countability and this 
leads at once to the observation that 'almost all' numbers are tran
scendental. Cantor's work may be regarded as the forerunner of some 
important metrical theory about which we shall speak in Chapter 9. 

2. Transcendence of e 

In 1873, there appeared Hermite's epoch-making memoir entitled 
Sur la fonction exponentielle§ in which he established the transcendence 
of e, the natural base for logarithms. The irrationality of e had been 
demonstrated, as remarked earlier, by Euler in 1744, and Liouville 
had shown in 1840, directly from the defining series, that in fact neither 
e nor e2 could be rational or a quadratic irrational; hut Hermite's work 
began a new era. In particular, within a decade, Lindemann succeeded 
in generalizing Hermite's methods and, in a classic paper, 11 he proved 
that 1T is transcendental and solved thereby the ancient Greek problem 
concerning the quadrature of the circle. The Greeks had sought to 
construct, with ruler and compasses only, a square with area equal to 
that of a given circle. This plainly amounts to constructing two points 
in the plane at a distance ,j1r apart, assuming that a unit length is 
prescribed. But, since all points capable of construction are defined 
by the intersection of lines and circles, it follows easily that their 
co'-ordinates in a suitable frame of reference are given by algebraic 
numbers. Thus the transcendence of 1T implies that the quadrature of 
the circle is impossible. 

The work of Hermite and Lindemann was simplified by Weierstrass~ 
in 1885, and further simplified by Hilbert, tt HurwitzH and Gordan§§ in 
1893. We proceed now to demonstrate the transcendence of e and 1T in 
a style suggested by these later writers. 

t See Bibliography. 
§ O.R. 77; = Oeuvres III, 150-81. 
~ Werke II, 341-62. 
tt Gouingen Nachrichten (1893), 153-5. 

~ Cf. Mathematika, 9 (1962), 1-8. 
II M.A. 20 (1882), 213-25. 
tt Ges. Abh. I, 1-4. 
§§ M.A. 43 (1893), 222:-5. 
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Theorem 1.2. e is transcendental. 

Preliminary to the proof, we observe that if f(x) is any ~al poly-
nomial with degree m, say, and if ' 

l(t) =I~ et-uj(u)du, 

where tis an arbitrary complex number and the integral is taken over 
thelinejoiningOandt, then, by repeated integration by parts, wehavet 

m m 
l(t) = et ~ fUl(O)- ~ j<i>(t). (1) 

j=O j=O 

Further, if/(x) denotes the polynomial obtained fromfby replacing 
each coefficient with its absolute value, then 

jl(t}j ::.;; I~ jet-uj(u)\ du::.;; jtj eltif(jtj). 

Suppose now that e is algebraic, so that 

qo+qte+ ... +qnen = 0 

(2) 

(3) 

for some integers n > 0, q0 =f 0, qv ... , qn. We shall compare estimates 
for 

where J(t) is defined as above with 

f(x) = xP-1(x-1)P ... (x- n)P, 

p denoting a large prime. From (1) and (3) we have, 
m n 

J = - ~ ~ qkj<il(k), 
1=0 k=O 

where m = (n+ 1)p-1. Now clearly j<il(k) = 0 if j < p, k > 0 and if 
j < p -1, k = 0, and thus for allj, k other than j = p- 1, k = 0, J<i>(k) 
is an integer divisible by p!; further we have 

jC:/J-ll(O) = (p-1)! ( -1)nP (n!)P, 

whence, if p > n,J(p-ll(O) is an integer divisible by (p-1)! but not by 
p!. It follows that, if alsop > jq0 \, then Jis a non-zero integer divisible 
by (p- 1)! and thus\ Jj ~ (p- 1)!. But the trivial estimate/(k) ::.;; (2n)m 
together with (2) gives 

jJj::.;; \q1 jef(l)+ ... +\qn\nenJ(n)::.;; cP 

for some c independent of p. 'l'he estimates are inconsistent if p is 
sufficiently large ttnd the eontmdict.ion proveR t.he theorem. 

t Jlll(;r) cl••rwt ''" t lw jt h cl••rivat ivn of f. 
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Theorem 1.3. 1T is transcendental. 

Suppose the contrary, that 1T is algebraic; then also () = i1T is 
algebraic. Let() have degree d, let ()d = {}), ()2, ••• , ()a denote the con
jugates of () and let l signify the leading coefficient in the minimal 
polynomiait defining e. From Euler's equation eitr = -1, we obtain 

The product on the left can be written as a sum of 2a terms e8 , where 

0=e1 01 + ... +eaOa, 

and ei = 0 or 1; we suppose that precisely n of the numbers 

6tet + ... +ea&a 

are non-zero, and we denote these by a 1 , • •• , an. We have then 

q + e"'1 + ... + e~n = 0, 

where q is the positive integer 2a- n. 
We shall compare estimates for 

J = l(a1) + ... +l(an), 

wher~ l(t) is defined as in the proof of Theorem 1.2 with 

j(x) = lnPxP-l(x-a1 )P ... (x-an)P, 

p again denoting a large prime. From (1) and (4) we have 

(4) 

where m = (n+ 1)p-1. Now the sum over k is a symmetric poly
nomial in la1, •.• , lan with integer coefficients, and it follows from two 
applications of the fundamental theorem on symmetric functions 
together with the observation that each elementary symmetric 
function in lav ... , lan is also an elementary symmetric function in the 
2a numbers 10, that it represents a rational integer. Further, since 
JW(ak) = 0 when j < p, the latter is plainly divisible by p!. 
Clearly also JW(O) is a rational integer divisible by p! when 

j :j= p-1, and J(p-l)(O) = (p-1)! ( -l)np (al ... an)P 

t That is, the irreducible polynomial indicated earlier with relatively prime integer 
coefficicnt11; tho cooffioiont of xd is called the leading coefficient, and it is a&sumed 
positive. Tho oonjugat,.,,. "ro tho zoroH of tho polynomial. 
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is a rational integer divisible by (p- 1)! but not by p! if p is sufficiently 
large. Hence, ifp > q, we have IJI ~ (p-1)!. But from (2) we obtain 

IJI ~ !at! e1"'11/(!atj) + ··· + ianl e!o:n!J(iani) ~ cP 

for some c independent of p. The estimates are inconsistent for p 
sufficiently large, and the contradiction proves the theorem. 

3. Lindemann's theorem 
The two preceding theorems, that is the transcendence of e and 1T, are 
special cases of a much more general result which Lindemann sketched 
in his original memoir of 1882, and which was later rigorously demon
strated by Weierstrass. 

Theorem 1.4. For any distinct algebraic numbers a 1, •.. ,an and any 
non-zero algebraic numbers fiv ... ,fin we have 

fit e"'l + ... +fin e«n 9= 0. 

It follows at once from Theorem 1.4 that e"'1, ... , e«n are algebraically 
independent for all algebraic av ... ,an linearly independent over the 
rationals; this form of the result is generally known as Lindemann's 
theorem. As further immediate corollaries of Theorem 1.4, one sees 
that cos a, sin a and tan a are transcendental for all algebraic a 9= 0, 
and moreover log a is transcendental for algebraic a not 0 or 1. 

Suppose now that the theorem is false, so that 

fit e"'l + ... +fin e"'n = 0. (5) 

One can clearly assume, without loss of generality, that the fi's are 
rational integers, for this can be ensured by multiplying (5) by all the 
expressions obtained on allowing fi1, ... , fin on the left to 'run inde
pendently through their respective conjugates and then further 
multiplying by a common denominator. Furthermore, one can 
assume that there exist integers 0 = n0 < n1 < ... < nr = n, such that 
ane+t> ... , ant+~ is a complete set of conjugates for each t, and 

fine+l = .. · = fine+~· 
For certainly a 1, ••• , an are zeros of some polynomial with integer 
coefficients and degrae N, say, and if cxn+l• ... , aN denote the remaining 
zeros, we have 

where the product is ov<lr all pormututions k1 , ... , kN of 1, ... , Nand 
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f3n+l = ... = f3N = 0. The left-hand side can be expressed as an aggre
gate of terms exp (h1~ + ... +hNaN) with integer coefficients, where 
h1, ••• ,hN are integers with sum N!, and clearly h1ak

1
+ ... +hNakN 

taken over all permutations k1, ... , kN of 1, ... , N is a complete set of 
conjugates; the condition concerning the equality of the f3's follows 
by symmetry. Note also that, after collecting terms with the same 
exponents, one at least of the new coefficients f3will be non-zero; this 
is readily confirmed by considering the coefficient of the term with 
exponent that is highest according to the ordering of the complex 
numbers z = x+iy given by z1 < z2 if x1 < x2 or x1 = x2 and y1 < y2. 

Let now l be any positive integer such that la1, ... , lan and lf31, ... , lf3n 
are algebraic integers, t and let 

f-t(X) = lnP{(x-a1) .. , (x-an)}Pj(x-ai) (1 ~ i ~ n), 

where p denotes a large prime. We shall compare estimates for 
!J1 ... Jni• where 

.ft = fJ1 Ii(al) + ··· + f3n~(an) (1 ~ i ~ n), 

and Ji(t) is defined as in the proof of Theorem 1.2, with f = fi· From 
(1) and (5) we have m n 

~ =- L L f3dif>(ak), 
j=Ok=l 

where m = np- 1. Further, JPl(ak) is an algebraic integer divisible~ 
by p! unlessj = p -1, k = i; and in the latter case we have 

n 
fip-1)(ai) = lnP(p-1)! n (ai-ak)P, 

k=l 
k+i 

so' that it is an algebraic integer divisible by (p- 1)! but not by p! ifp is 
sufficiently large. It follows that J.g is a non-zero algebraic integer 
divisible by (p- 1) !. Further, by the initial assumptions, we have 

m r-1 

.ft = - L L f3nt+l{ffil (an1+1) + · · · + J}il(ant+l)}, 
1=0 t=O 

and here each sum over t can be expressed as a polynomial in ai with 
rational coefficients independent of i; for clearly, since a 1, •.• ,an is a 
complete set of conjugates, the coefficients ofjp> (x) can be expressed in 
this form. Thus J1 ..• Jn is rational, and so in fact a rational integer 

t An algebraic number is said to be an algebraic integer if the leading coefficient in 
its minimal defining polynomial is 1; if a. is an algebraic number and lis the leading 
coefficient in ita minimal polyno~ial, then la. is an algebraic integer. 

t That is, tho quut.iont iM an algobraio integer. 

2 BTN 
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divisible by ((p-1)!)n. Hence we have IJ1 .•• Jni ~ (p-1)!. But (2) 
gives 

for some c independent of p, and the inequalities are inconsistent if p is 
sufficiently large. The contradiction proves the theorem. 

The above proofs are simplified versions of the original arguments of 
Hermite and Lindemann and their motivation may seem obscure; 
indeed there is no explanation a priori for the introduction of the 
functions I andf. A deeper insight can best be obtained by studying 
the basic memoir of Hermite where, in modified form, the functions 
first occurred, but it may be said that they relate to generalizations, 
concerning simultaneous approximation, of the convergents in the 
continued fraction expansion of ex. Further light on the topic will be 
shed by Chapters 10and 11. Lindemann's theorem formed the summit 
of the accomplishments of the last century, and our survey of the 
period is herewith concluded. 
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LINEAR FORMS IN LOGARITHMS 

1. Introduction 

In 1900, at the International Congress of Mathematicians held 
Paris, Hilbert raised, as the seventh of his famous list of 23 problell 
the question whether an irrational logarithm of an algebraic numl 
to an algebraic base is transcendental. The question is capable 
various alternative formulations; thus one can ask whether an i.rJ 
tional quotient of natural logarithms of algebraic numbers is tr2 
scendental, or whether cxl is transcendental for any algebraic numl 
a 9= 0, 1 and any algebraic irrational f3. A special case relating 
logarithms of rational numbers can be traced to the writings of Eu 
more than a century before, but no apparent progress had been rna 
towards its solution. Indeed, Hilbert expressed the opinion that t 
resolution of the problem lay farther in the future than a proof oft 
Riemann hypothesis or Fermat's last theorem. 

The first significant advance was made by Gelfondt in 1929. Emplc 
ing interpolation techniques of the kind that he had utilized previou1 
in researches on integral integer-valued functions, t Gelfond showed t~ 
the logarithm of an algebraic number to an algebraic base cannot be 
imaginary quadratic irrational, that is, aP is transcendental for a 
algebraic number a 9= 0, 1 and any imaginary quadratic irrational 
in particular, this implies that e11 = (- 1 )-i is transcendental. T 
result was extended to real quadratic irrationals f3 by Kuzmin§ 
1930. But it was clear that direct appeal to an interpolation series j 
ePz, on which the Gelfond-Kuzmin work was based, was not appl 
priate for more general /3, and further progress awaited a new idea. T 
search for the latter was concluded successfully by Gelfond 11 a: 
Schneider~ independently in 1934. The arguments they discover 
were applicable for any irrational f3 and, though differing in det~ 
both depended on the construction of an auxiliary function tll 
vanished at certain selected points. A similar technique had been us 
n few years earlier by Siegel in the course of investigations on t 

t O.R. 189 (1929), 1224--K. 
§ l.A.N. 3 (1930), liH3 117. 
,f J.M. 17l ( 11134), fill II. 

t T6hoku Math .• J. 30 ( 1929), 280-5. 
II D.A.N. 2 (1934), 1-6: T.A.N. 7 (1934), 623 

r o 1 2-2 



10 LINEAR FORMS IN LOGARITHMS 

Bessel functions. t Herewith Hilbert's seventh problem was finally 
solved. 

The Gelfond-Schneider theorem shows that for any non-zero 
algebraic numbers av a 2, flv /12, with log a1 , log a 2 linearly inde
pendent over the rationals, we have 

/11 log a 1 + fJ2 log a 2 9= 0. 

It was natural to conjecture that an analogous theorem would hold 
for arbitrarily many logarithms of algebraic numbers, and, moreover, 
it was soon realized that such a result would be capable of wide 
application. The conjecture was proved by the author~ in 1966, and 
the demonstration will be the subject of the present chapter. 

Theorem 2.1. If av ... , an are non-zero algebraic numbers such that§ 
log av ... , log an are linearly independent over the rationals, then 1, 
log a1, •.. , log an are linearly independent over the field of all. algebraic 
numbers. 

The proof depends on the construction of an auxiliary function of 
several complex variables which generalizes the function of a single 
variable employed originally by Gelfond. Functions of several variables 
were utilized by Schneider" in his studies concerning Abelian integrals 
but, for many years, there appeared to be severe limitations to their 
serviceability in wider settings. The main difficulty concerned the 
basic interpolation techniques. Work in this connexion had hitherto 
always involved an extension in the order of the derivatives while 
leaving the points of interpolation fixed; however, when dealing with 
functions of several variables, this type of argument requires that the 
points in question form a cartesian product, a condition that can 
apparently be satisfied only with respect to particular multiply
periodic functions. The proof of Theorem 2.1 involves an extrapolation 
procedure, special to the present context, in which the range of inter
polation is now extended while the order of the derivatives is reduced. 
Refinements and generalizations will be discussed in the next chapter 
and applications of the results to various branches of number theory 
will be the theme of Chapters 4 and 5. 

t Abh. Preuas Akad. Wiss. (1929), No.1; of. oh. 11. 
t Mathematika, 13 (1966), 204--16; 14 (1967), 102-7,220-8. 
§ Here the logarithms can take any fixed value!!. 
II J.M. 183 (1941), 110-28. 
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2. Corollaries 
Before proceeding to the proof of Theorem 2.1, we record a few 
immediate corollaries. 

Theorem 2.2. Any non-vanishing linear combination of logarithms 
of algebraic numbers with algebraic coefficients is transcendental. 

In other words, for any non-zero algebraic numbers av ... , an and 
any algebraic numbers Po,Pv ... ,pn with Po =f 0 we have 

This plainly holds for n = 0. We assume the validity for n < m, where 
m is a positive integer, and proceed to prove the proposition for n = m. 
Now if log a1, ••• , log am are linearly independent over the rationals 
then the result follows from Theorem 2.1. Thus we can suppose that 
there exist rationals Pv ... ,pm, with say Pr =f 0, such that 

p 1 loga1 + ... +pmlogam = 0. 
Clearly we have 

Pr(Po + p 1 log a 1 + ... + Pm log am) = p~ +Pi log a1 + ... + P~ log am, 

where 

and alsop~ =f 0, p; = 0; the required result follows by induction. 

Theorem 2.3. efloaf_t ... a~n is transcendental for any non-zero 
algebraic numbers a1, •.. , an, Po• Pt• ... , Pn-

. Indeed, if an+l = efloaft ... a~n were algebraic, then 

p 1 log a 1 + ... + Pn log an -log an+l ( = -Po) 

would be algebraic and non-vanishing, contrary to Theorem 2.2. 
There is a natural analogue to Theorem 2.3 in the case Po= 0: 

Theorem 2.4. aft ... a~n is transcendental for any algebraic numbers 
a 1, ... , an, other than 0 or 1, and any algebraic numbers p1, ... , Pn with 
1, p1, ••• , Pn linearly independent over the rationals. 

For the proof, it suffices to show that for any algebraic numbers 
a 1, ... ,an, other than 0 or 1, and any algebraic numbers p 1, ... ,pn, 
linearly independent over the rationals, we have 

f/1 1oga1 + ... +p71 loga,. i= 0; 
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in fact the theorem follows on applying this with n replaced by n + 1 
and fln+l = -1. The proposition plainly holds for n = 1; we assume 
the validity for n < m, where m is a positive integer, and proceed to 
prove the assertion for n = m. The result is an immediate consequence 
of Theorem 2.1 if log av ... , log an are linearly independent over the 
rationals; thus we can suppose that there exist rationalsp1, ... ,pm and 
numbers fli as in the proof of Theorem 2.2, with now flo = fl~ = 0. It is 
clear that if fl1, •.. , flm are linearly independent over the rationals, then 
so also are the flj, withj not 0 orr, and the theorem follows by induction. 

Finally, from particular cases of the above theorems, it is evident 
that 1T +log a is transcendental for any algebraic number a =f 0 (which 
includes the transcendence of 1r) and that erJ."+P is transcendental for 
any algebraic numbers a, fl with fl =f 0 (which includes the tran
scendence of e). 

3. Notation . 
The remainder of the chapter is devoted to a proof of Theorem 2.1. 
We suppose that the theorem is false, so that there exist algebraic 
numbers fl0 , flv ... , fln, not all 0, such that 

flo+fl1 loga1 + ... +flnlogan = 0, 

and we ultimately derive a contradiction. Clearly one at least of 
{J1, ..• , fln is not 0 and, without loss of generality, we can suppose that 
fln =f 0. Since the above equation continues to hold with {Jj = - fl1/fln 
in place of fl1, we can further suppose, without loss of generality, that 
fln = - 1; we have then 

(1) 

We denote by c, c1, c2, ... positive numbers which depend only on the 
a's, fl's and the original determinations of the logarithms. By h we 
signify a positive integer which exceeds a sufficiently large number cas 
above. 

We note, for later reference, that if a is any algebraic number 
satisfying A d+A d 1+ +A o oa ta - ... d = ' 
where A 0 , ... , Ad are rational integers with absolute values at most A, 
then, for each non-negative integer j, we have 

(A0 a)i = Al(>+Ap>a+ ... +A~~1 ad-t 

for some rational integers A~> with absolute values at most (2A)i; this 
is an obvious consequence of the recurrence relations 

A~} = A 11 Alk-V- Att_,.A!} ~> (0" rn < d,j ~d), 
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where A <{1 1) = 0. It follows that if dis the maximum of the degrees of 
a 1, ..• ,an, flo, ... ,fln-1 and if av ... ,an, b0, ••• , bn_1 are the leading coeffi
cients in their respective minimal polynomials, then 

d-1 d-1 
(arar)i = ~ a~~ a;, (b R )i = "' b(i) Rt rfJr ~ rt fJr, (2) 

8=0 t=O 

where the a}!), b~V are rational integers with absolute values at most cf. 
For brevity we shall put 

fmo, ... '"'n-1 (zo, ... 'Zn-1) = (ojozo)mo ... ( ojozn-1)mn-Ij(zo, • .. ' Zn-1), 

where f denotes an integral function and m 0, ••• , mn_1 are non -negative 
integers. 

4. The auxiliary function 
Our purpose now is to describe the auxiliary function <I> that is funda
mental to the proof of Theorem 2.1; it is constructed in Lemma 2 
below after a preliminary result on linear equations obtained by 
Dirichlet's box principle. Basic estimates relating to <I> are established 
in Lemma 3 and these are then employed for the extrapolation 
algorithm. Two further supplementary results are given by Lemmas 6 
and 7; the former exhibits a simple, but useful, lower bound for a linear 
form in logarithms, and the latter furnishes a special augmentative 
polynomial. I twill be seen that the inclusion of the 1 in the enunciation 
of Theorem 2.1, which yields the algebraic powers of e in the corollaries, 
entails a relatively large amount of additional complexity in the proof; 
in particular the final lemma is required essentially to deal with this 
feature. 

'Lemma 1. Let M, N denote integers with N > M > 0 and let 

uii ( 1 :;:; i :;:; M, 1 :;:; j :;:; N) 

denote integers with absolute values at most U ( ~ 1). Then there exist 
integers xi, ... ,xN not all 0, with absolute values at most (NU)Mf(N-M) 
such that N 

~ uijxj = 0 
j=l 

(1 :;:; i:;:; M). (3) 

Proof. We put B = [(NU)Mf(N-Ml], where, as later, [x] denotes the 
integral part of x. There are (B + t)N different sets of integers x1, ... , xN 
with 0 :;:; x1 :;:; B ( l :;:; j :;:; N), and for each such set we have 

- ~ U :;:; Yt :;:; JttB ( l :;:; i :;:; M), 
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where y~, denotes the left-hand side of (3), and -Ji, ~denote the sum 
of the negative and positive u,.:J (1 ~ j ~ N) respectively. Since 
J.i+ ~ ~ NU, there are at most (NUB+ 1)M different sets y1, ···•YM· 
Now (B + 1)N-M > (NU)M and so (B + 1)N > (NUB+ 1)M. Hence 
there are two distinct sets x1, ... , xN which correspond to the same set 
y1, ... ,yM, and their difference gives the required solution of (3). 

Lemma 2. There are integers p(A0, ... ,An), not all 0, with absolute 
values at most eh8

, such that the function 

where Yr = Ar+Anflr (1 ~ r < n) and L = [h2-l/(4n>], satisfies 

<l>mo, .... mn-l(l, ... , l) = 0 (4) 

for all integers l with 1 ~ l ~ h and all non-negative integers m0 , ••• , m.,_1 
with m 0 + ... +mn-l ~ h2• 

Proof. It suffices, in view of ( 1 ), to determine the p(A0 , ... , An) such that 

for the above ranges of l, m 0 , ... , mn-l• where 

On multiplying (5) by 

(6) 

writing 

and substituting from (2) for the powers of arar and brflr which result, 
we obtain 

where 
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and q', q", rj" are given by 
n 

q' = 11 {a<L-Ar>la<~rl>} 
r r, s, ' 

r=l 

q" = :~: {(::) (br'\)111r-l'rA~bX'f~}. 

q'" = (::) A0{A0 - 1) ... (;\0 - p0 + 1) ;\'~o-Pob~oP.o-.uob~~~-po). 

15 

Thus (4) will besatisfiedifthed2nequations A(s, t) = 0 hold. Now these 
represent linear equations in the p(;\0 , ••• , An) with integer coefficients. 

Since l ~hand (::) ~ 2mr, we have 

n 
lq'l ~ 11 {a~L-~rllc}r'} ~ cfh, 

r=l 

n-1 

ltf'l ~ 11 (caL)m', 
r=l 

\q111
\ ~ 2mo(A0 bn)i'o(c1 An)m.-l'oPo-l'o ~ (c3 L)mohL, 

and, by virtue of the inequalities 

(m0+ 1) ... (mn_1 +1) ~ 2mo+ ... +mn-t ~ 2h", 

it follows easily that the coefficient of p(A0 , ••• ,An) in the linear form 
A(s, t), namely m. ""n-l 

~ ... ~ q'q"q"', 
Po=O l'n-l =0 

has absolute value at most U = (2c3 L)h"cfh. Further, there are at 
most h(h2 + 1)n distinct sets of integers l, m 0, .. . , mn_1, and hence there 
are M ~ d2nh(h2 + 1 )n equations A(s, t) = 0 corresponding to them. 
Furthermore, there are N = (L + 1 )n+1 unknowns p(A0, ••• , An) and we 
have 

Thus, by Lemma 1, the equations can be solved non-trivially and the 
integers p(A0 , ... , An) can be chosen to have absolute values at most 

NU ~ h2n+2(2c3 L)h"cfh ~ e}l" 

if h is sufficiently large, as required. 

Lemma 3. Let m0, . .. , mn-t be any non-negative integers with 

mo+ ... +mn-1 ~ h2, 

and let /(z) = <ll,n ,._ (z, ... ,z). 
o•···•··~-1 

(7) 
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Then, for any number z, we have lf(z)j ~ c:3
+Lizl. Further, for any 

positive integer l, either f(l) = 0 or if(l)j > c6"3
-Ll. 

Proof. The functionf(z) is given by 

L L 
P ~ ... ~ p(A0, ... , An) q(A0, An, z) a}1z ... a~nzyT1 ... '}'~~1 ~, 
~.=0 ~,=0 

where q(A0, An, z) is defined in Lemma 2 and 

P = (loga1)m1 ... (1ogan_1)mn-t, 

We have 

jq(A0 , An, z)j ~ (c1 L )mo jzjL ~ (mo) = (2c7L)mo jzjL, 
p,=O Ito 

'a~1z a~nzj ,:: cLizl 
1 ... n "' 8 • lpym, ymn-1j :( (c L)m1+ ... +mn-1 

1 ... n-1 "' 9 • 

and the number of terms in the above multiple sum is at most h2n+2 ; 

the required estimate for If ( z) I now follows by virtue of the inequalities 

To prove the second assertion, we begin by noting that the num her 
f' = (P' / P)f(l), where P' is defined by (6), is an algebraic integer with 
degree at most d2n. Further, by estimates as above, we see that any 
conjugate off', obtained by substituting arbitrary conjugates for the 
ar, flr, has absolute value at most c~~+Ll; and clearly the same bound 
obtains for P'JP. Butifj' =f: 0, then thenormt off' has absolute value 
at least 1 and so 

This gives the required result. 

Lemma 4. Let J be any integer satisfying 0 ~ J ~ (8n)2• Then (4) 
holds for all integers l with 1 ~ l ~ hl+J/(Bn> and all non-negative integers 
m0, ••• ,mn_1 withm0 + ... +mn_1 ~ h2j2J. 

Proof. The result holds for J = 0 by Lemma 2. Let K be an integer 
with 0 ~ K < (8n)2 and assume that the lemma is valid for 

J = 0, 1, ... ,K. 

We proceed to prove the proposition for J = K + 1. 

t Tho product of tho oonjugatoH; it i~ plainly o. rational integer. 
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It suffices to show that for any integer l with RK < l :;:; RK+l and 
any set ofnon-negative integers m0, ... ,mn_1 with 

mo+ ... +mn-1:;:; SK+l• 

we havef(l) = 0, wheref(z) is defined by (7) and 

RJ = [hl+J/(Bn>], SJ = [h2j2J] (J = 0, 1, ... ). 

By the inductive hypothesis we see that fm(r) = 0 for all integers r, m 
with 1 :;:; r :;:; RK, 0 :;:; m :;:; SK+l; for clearly fm(r) is given by 

( 8j8zo + ... + 8j8zn-l)m <l>mo, ... , mn-t(Zo, ... 'Zn-1), 

evaluated at the point z0 = ... = Zn_1 = r, that is by 

~ '( . ' . 1)-1 ..n ( ) ~m. Jo· .. ·Jn-1· ""'mo+io • .... mn-t+in-1 r, ... , r ' 

where the sum is over all non-negative integers j 0, ... ,jn_1 with 
j 0 + ... + in-1 = m, and the derivatives here are 0 since 

Thusf(z)/F(z), where 

F(z) = {(z-1) ... (z-RK)}sx+t, 

is regular within and on the circle 0 with centre the origin and radius 
R = RK+lh11<Bnl, and hence, by the maximum-modulus principle, 

OjF(l)j ~ ®!f(l)!, (8) 

where 0, 0 denote respectively the upper bound of lf(z)! and the 
lowerboundofjF(z)l withz on 0. Now clearly 0 ~ (!R)Rx8 x+1 and, by 
Lemma 3, ():;:; c~3+LR. Further, we have jF(l)j :;:; Rl}48{+ 1 and, by 
Lemma 3 again, either f(l) = 0 or lf(l)j > C6h"-LR. But, in view of (8), 
the latter possibility gives 

(c5 c6 )h3+LR ~ (!h1/(8n))RxSK+I, 

and, since]{ < (8n) 2 and 

LR:;:; h3+KI(Bn):;:; 2K+3RKSK+l• 

the inequality is untenable if his sufficiently large. Hencef(l) = 0, and 
the lemma follows by induction. 

Lemma 5. Writing ¢(z) = <l>(z, ... , z), we have 

j¢1(0)1 < PXp(-h8n) (0 :;:;j:;:; h8n). (9) 
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Proof. From Lemma 4 we see that (4) holds for all integers land non
negative integers m0, ... ,mn-l satisfying 1 ~ l ~X and 

mo+ ... +mn-1 ~ Y, 

where X = h8n and Y = [h2j2(8nl2
]. Hence, as in the proof of Lemma 4, 

we obtain ¢m(r) = 0 for all integers r, m with 1 ~ r ~ X, 0 ~ m ~ Y. 
It follows that rp(z)fE(z), where 

E(z) = {(z-1) ... (z-X)}Y, 

is regular within and on the circle r with centre the origin and radius 
R = Xh11<sn>, and so, by the maximum-modulus principle, we have, 
for any w with Jwl < X, 

J¢(w)i ~ gE-lJE(w)J, 

where g and E denote respectively the upper bound of J¢(z)J and the 
lower bound of JE(z)J with z on r. Now clearly 

!E(w)J ~ (2X)XY, JE! ;?; (!R)XY, 

and, by Lemma 3, g ~ c:•+LR. Hence we obtain 

lr/J{w)J ~ c~8+LR(!NI(8n))-XY, 

and since 

it follows that J¢(w)J < e-XY. Further, by Cauchy's formulae, we have 

j! J rp(w) ¢1(0) = -
2 

. J+1 dw, 
m Aw 

where A denotes the circle JwJ = 1 described in the positive sense, and 
the expression on the right has absolute value at most ji e-XY. The 
required estimate (9) follows at once. 

Lemma 6. For any integers t1, •.. , tn, not all 0, and with absolute values 
at most T, we have 

Proof. Let a1 (1 ~ j ~ n) be the leading coefficient in the minimal 
defining polynomial of ct; or ctj1 according as t1 ;?; 0 or t1 < 0. Then 

W - alttl aitni ("'tl ,.,tn- 1) 
- l ··· n ""1 ··• ""n 

is an algebraic integer with degree at most dn, and any conjugate of w, 
obtained by substituting arbitrary conjugates for ct1, ..• , ctn, has 
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absolute value at most cl:i. If w = 0 then 

n = tllog al + ... + tn log an 

19 

is amultipleof27Ti, and infactanon-zero multiplesinceloga11 ••• , log an 
are, by hypothesis, linearly independent over the rationals; hence, in 
this case, the lemma is valid trivially. Otherwise the norm of w has 
absolute value at least 1 and thus jwj ;;:::: caTd". But since, for any z, 
jez-11 ~ jzj elzl, we obtain jwj ~ JOJ e1°1cfa and hence, assuming, as 
we may, that IOJ < 1, the lemma follows. 

Lemma 7. Let R, S~be positive integers and let o-0 , ••• , <TR_1 be distinct 
complex numbers. Define <T as the maximum of 1, lo-0 J, ... , Jo-R_1 1 and 
define pas the minimum of 1 and the jeri- o-il with 0 ~ i < j < R. Then, 
for any integers r, s with 0 ~ r < R, 0 ~ s < S, there exist complex 
numbers wi (0 ~ i < RS) with absolute values at most (8<rfp)RS such that 
the polynomial RS-t 

W(z) = ~ w1zi 
i=O 

satisfies llj(cri) = 0 for all i, j with 0 ~ i < R, 0 ~ j < S other than 
i = r, j = s, and Jfs(<rr) = 1. 

Proof. The required polynomial is given by 

where 

(-1) 1 J (s-<rr) 8 U(z) 
W(z) = 8! 27Ti 0 , (s-z) U(s) ds, 

U(z) = {(z- <r0) ••• (z- <rR_1)}8 

and or denotes a circle described in the positive sense with centre <Tr 

and sufficiently small radius, less than, say, p and jz- err I for z =f: err. 
The proof depends on two alternative expressions for W(z). First, since 
the absolute value of the integrand multiplied by lsi decreases to 0 as 
lsi-+ oo we have, by Cauchy's residue theorem, 

where 01, like Or above, is a circle about <ri with sufficiently small 
radius. Clearly tho sum over j is a rational function of z, regular at 
z = err and, since U(z) hus a zero at z = err of order S, it follows that 
Uj( cr,) = l if j = R IUHI 0 otherwise. 
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On the other hand, from Cauchy's formulae we obtain 

- 1 [ dt (~- O"r)s U(z)] 
W(z) = s!t! d~t (~-z) U(~) t;=u: 

where t = S -s-1, and thus 

W(z) = { -1)t-1 (s!)-1 U(z) ~v(j0, ••• ,jR_1) (O"r-z)-j,-1, 

where the sum is over all non-negative integers j 0, ••• ,jn_1 with 
j 0 + ... + jR_1 = t, and 

( . . ) - 11 +Ji- ( )-S-Ji R-t(S. 1) 
V Jo, ···•JR-1 - · O"r-O"i · 

i=O Ji 
i*r 

Now jr+ 1 lies between 1 and S inclusive and so obviously W(z) is a 
polynomial with degree at most RS -1. Further, we see that W(z), 
like U(z), has a zero at z = O"i (i =t= r) of orderS, and so Jf;(O"t:) = 0 for 
all j < S. Furthermore, it is clear that the typical factor in the product 
defining v has absolute value at most 28+1i-1p-S-i;, and thus 

!v(j0 , ••• , jR_1)j ~ (2jp)<R-l)S+J0+···+1R-l ~ (2jp)RS. 

On noting that the coefficients of (O"r-z)-ir-1 U(z) have absolute 
values at most (0"+ 1)ns and observing, in addition, that the number 
of terms in the above sum does not exceed SR, it follows easily that the 
coefficients of W(z) have absolute values at most 

SR(O"+ l)RS (2/p)RS ~ (80"/p)RS, 

and this completes the proof of the lemma. 

5. Proof of main theorem 
We proceed to show that the inequalities (9) obtained in Lemma 5 
cannot all be valid, and the contradiction will establish Theorem 2.1. 

We begin by writingS= L+ 1, R = sn, and notingthatanyinteger 
i with 0 ~ i < RS can be expressed uniquely in the form 

i = A0 +A1S+ ... +AnSn, 

where A0 , ••• , An denote integers between 0 and L inclusive. For each 
such i we define 

and we put 

Then clearly 
us -1 

¢{z) = ~ p;z";f.J/F;z. 
i I) 

(10) 
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Further, from Lemma 6, any two 1/ri which correspond to distinct sets 
Al> ... , An differ by at least ci)L; in particular, exactly R of the 1/fi are 
distinct, and we denote the different values, in some order, by 
o-0, ... , o-R-l· If o-, pare defined as in Lemma 7, we have then o- ~ c14 L 
andp ~ c~sL. 

Let now t be any suffix such that Pt =1= 0, let s = Vt, let r be that 
suffix for which 1/ft = o-r, and let W(z) denote the polynomial given by 
Lemma 7. By the properties of W(z) specified in the lemma, we see that 

RS-1 
Pt = ~ Pi Jfv.(lj;'i)· 

i=O t 

Further, by Leibnitz's theorem, we have 

and thus from (10) we obtain 
RS-1 

Pt = ~ w;¢;(0). 
j=O 

Now RS ~ h2n+2 and so, from Lemma 5, it follows that (9) holds for all 
j with 0 ~ j ~ RS. Further, by Lemma 7, we have 

JwiJ ~ (8o-fp)RS ~ (8cuLcfs)Rs ~ c~~nH. 

Hence, since IPtl ~ 1, we conclude that 

0 ~ log RS + c17 h2n+4- h8n. 

The inequality is plainly impossible if h is sufficiently large and the 
contradiction proves the theorem. 
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LOWER BOUNDS 
FOR LINEAR FORMS 

1. Introduction 
Various conditions were obtained in Chapter 2 for the non-vanishing 
of the linear form 

A= /30 + fJ1 loga1 + ... +flnlog an, 

where the a's and fJ's denote algebraic numbers; in particular, it 
suffices if flo =I= 0, or if 1, /31, .•. , fln are linearly independent over the 
rationals, assuming that the a's are not 0 or 1. In the present chapter, 
quantitative extensions of the work will be discussed, giving positive 
lower bounds for !AI in terms of the degrees and heights of the a's and 
fJ's; it will be recalled from Chapter 1 that the height of an algebraic 
number is the maximum of the absolute values of the relatively prime 
integer coefficients in its minimal defining polynomial. Theorems of 
this kind were first proved by Morduchai-Boltovskojt in 1923, in the 
case n = 1, and by Gelfand* in 1935, in the case n = 2, flo= 0. A lower 
bound for jAj, valid for arbitrary n, was established in 1966, on the 
basis of the work described in Chapter 2, and a variety of improve
ments have been obtained subsequently. In particular, when the a's 
and also the degrees of the fJ's are regarded as fixed, a result that is 
essentially best possible has now been derived.§ 

Theorem 3.1. Let a10 ... , an be non-zero algebraic numbers with 
degrees at most d and heights at most A. Further, let fJ0 , ... ,fln be 
algebraic numbers with degrees at most d and heights at most B (;;:::: 2). 
Then either A= 0 or jAj > B-0 , where 0 is an effectively computable 
number depending only on n, d, A and the original determinations of the 
logarithms. 

The estimate for 0 takes the form 0' (log A )K, where K depends only 
on n, and 0' depends only on n and d. In the case when flo = 0 and 
fJ1, ... ,fln are rational integers, it has been shown that in fact the 
theorem holdswithO = O'Q logO, wheren = (logA)n; and moreover, 

t O.R. 176 (1923), 724-7. t JJ.A.N. l (193li), 177-82. 
§ Mat. l)bornik, 76 (1968), 304-19; 77 (1901!), 423-36 (N. I. l<'ol<lmau). 

r 22 1 
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if it is assumed that the height of a1 does not exceed A 1 (;?:: 4), then 
Q can be taken as logA1 .•. logAn.t Still stronger results have been 
obtained in the special case, of considerable importance in applications, 
when one of the a's, say an, has a large height relative to the remainder. 
Indeed it has been proved that if av ... ,an-land an have heights at 
most A' and A (;?:: 4) respectively, then 

IAI > (BlogA)-OlogA, 

where 0 > 0 is effectively computable in terms of A', nand d only) 
Further, when Po = 0 and fJ1, ... , Pn are rational integers, the bracketed 
factor log A has been eliminated to yield 

IAI > Q-log A log B, 

which is clearly best possible with respect to A when B is fixed, and 
with respect to B when A is fixed.§ Furthermore, under the additional 
specialization Pn = -1, it has been shown that 

IAI > A-Oe-eB 

for any e > 0, where now 0 depends only on A', n, d and e. 11 As we 
shall see later, these results have particular value in connexion with 
the study of Diophantine problems. 

It will be noted that, from the case n = 1 of Theorem 3.1, we have 

lloga-fJI > B-0 

for any algebraic number a, not 0 or 1, and for all algebraic numbers fJ 
with degrees at most d and heights at most B (;?:: 2), where 0 depends 
only on d and a; more especially we have 

111-fJI > B-0 

for some 0 depending only on d. Estimates of the latter kind with, in 
fact, precise values for 0 were derived long before the general result. 
Indeed Feldman, 'If extending work of Mahler, tt obtained the first of 
these inequalities with 0 of order (dlog d)2, assuming that B is 
sufficiently large, and the second with 0 of order dlogd. Moreover, 
when fJ is rational, some striking inequalities of the type 

111-pfql > q-42, 

t Acta Arith. 27 (1974), 247-52. 
t Diophantine appf'021imation and ita applications (Academic Press, 1973) pp. 1-23. 
§ Acta Arith. 21 (1972), 117-29. 
II Acta Arith. :U (1973), 33-6 ~ I.A.N. :U (1960), 357-68, 475--92. 
tt J.M. 166 (1932), 118-50. 

3 BTN 



24 LOWER BOUNDS FOR LINEAR FORMS 

valid for all rationals pfq (q ;?:: 2), were established by Mahler, t and, 
more recently, by similar methods, values of C arbitrarily close to the 
conjecturally best possible d + 1 were derived in connexion with 
approximations to the logarithms of certain rational a.t Several 
further estimates of this character, classically termed transcendence 
measures, are furnished by the results cited after Theorem 3.1. They 
imply, for instance, that, subject to the hypotheses of Theorems 2.3 or 
2.4, we have 

for all algebraic numbers y with height at most H (;?:: 4), where C 
depends only on the a's, jJ's and the degree of y; in particular 

je"-pfqj >q-ciogJogq 

for all rationals pfq (q;?:: 4), where c denotes an absolute constant, and 
this is the best measure of irrationality fore" obtained to date. 

We shall prove here only Theorem 3.1; the demonstrations of the 
other results are similar, though the underlying auxiliary functions 
are modified, the inductive nature of the argument is more complicated, 
and certain lemmas appertaining to Kummer theory are employed 
in the latter part of the exposition in place of the determinant that 
occurs here. The reader is referred to the original memoirs for details. 
Applications of the results to various branches of number theory will 
be discussed in subsequent chapters. 

2. Preliminaries 

We begin with some observations concerning the heights of algebraic 
numbers. First we note that if a is an algebraic number with degree d 
and height H then jaj ~ dH; for if a satisfies 

aoaa+atad-t+ ... +aa = 0, 

where the a1 denote rational integers with absolute values at most H 
and a0 ;?:: 1, then either jaj < 1 or 

iai::;; ja0aj = ja1+a2a-1+ ... +aaa-d+Ij::;; dH. 

Secondly we observe that if a, jJ are algebraic numbers with degrees at 
most d and heights at most H, then ajJ and a+ jJ have degrees at most 
d2 and heights at most H', where log H' flog H is bounded above by a 

t Philoa. Trans. Roy. Soc. London, A 245 (1953), 371-1!8: I.M. 15 (11!53), 30-42. 
t Acta Arith. 10 (11!114), 315-23. 
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number depending only on d. Por let a(il, jJ<i> denote the respective 
conjugates of a and jJ. Then ajJ and a+ jJ are zeros of the polynomials 

(ab)d" fi (x-a<i>jJ<J>), (ab)d" fi (x-a<i>-j]W) 
~i ~~ 

respectively, which clearly have integer coefficients and degrees at 
most d2• The zeros of the minimal polynomials of ajJ and a+ jJ are thus 
given by some subsets of the a<iljJ(i) and a<i>+fJW, and the leading 
coefficients divide (ab)a•. The assertion now follows on noting that the 
a<i>, jJ(i) have absolute values at most dH. 

For any integers k ;?:: 1, l ;?:: 0 we shall signify by v(l; k) the least 
common multiple of l + 1, ... , l + k. Further, for brevity, we shall write 

~(x; k) = (x+ 1) ... (x+k)fk!, 

1 am 
and we shall put ~(x; k,l,m) = 1 -d (~(x; k))1• 

m. xm 
The functions have the following properties: 

Lemma 1. When xis a positive integer thenalso(v(x;k))m ~(x; k, l, m) 
is a positive integer and we have 

~(x; k,l,m)::;; 4l<x+kl, v(x; k)::;; {c(x+k)jk}2k 

for some absolute constant c. 

Proof. First we observe that 

~(x; k, l,m) = (~(x; k))'.~~{(x+j1) ... (x+jm)}-1, 

where the summation is over all selections of m integers j 1, ••• ,jm from 
the set 1, ... , k repeated l times, and the right-hand side is read as 0 if 
m > kl. Clearly x + jr divides v(x; k) for each r, and since certainly 
~(x; k) is a rational integer, the first part of the proposition follows. 
Further, we see that 

~(x · k l m) ,;::: (X+ k) 1 (kl) ,;::: 2l(x+k)+kl 
' ' ' ""' k m ""' ' 

and this gives the required estimate. 
To obtain the estimate for v, we write v(x; k) = v'v", where all prime 

factors of v', v" are ~ k and > k respectively. Since the exponent to 
which a prime p divides v' is at most log (x + k)jlogp, we have 

log v' ::;; ~log (x + lc) ::;; c'lc log (x + k)j!og k, 
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where the summation is over all primes p :s;; k, and c', illre c, c", c111 below, 
denotes an absolute constant. Now we can assume that k > c" and 
that x > c" k for some sufficiently large c", for otherwise the desired 
conclusion would follow at once from the simple upper bounds (x + k)k 
and cx+k for v(x; k). Thus we see that 

v' :s;; {c"'(x+k)fk}k. 

But clearly v" divides ~(x; k), and this does not exceed (x+k)kjk!; 
the required estimate is now apparent. The exponent 2 can in fact be 
reduced easily to 1, which is best possible, but the refinement is not 
needed here. 

We prove next a simple lemma giving a special basis for the space of 
polynomials with bounded degree. 

Lemma 2. If P(x) is a polynomial with degree n > 0 and if K is a 
field containing its coefficients then, for any integer m with 0 :s;; m :s;; n, the 
polynomials P(x),P(x+ 1), ... , P(x+m) and 1, x, ... , xn-m-l are linearly 
independent over K. 

Proof. The assertion is readily verified for n = 1. We assume the 
result for n = n' and we proceed to prove the validity for n = n' + 1. 
Suppose therefore that 0 :s;; m :s;; n' + 1, that P(x} is a polynomial with 
degree n' + 1 and that 

R(x) = A0 P(x) +A1 P(x+ 1)+ ... +AmP(x+m) 

has degree at most n' -m for some elements Ai of K. We have 
m 

R(x) = (A0 + ... +Am)P(x+m+l)+!; (A 0 +A1 + ... +A1)Q(x+j), 
J=O 

where Q(x) = P(x)-P(x+ 1). But Q(x) has degree n' and since 
P(x+m + 1) has degree n' + 1 we see that A0 + ... +Am= 0. It follows 
from the inductive hypothesis that 

A0 +A1 + ... +A;= 0 (0 :s;; j :s;; m), 

and so A0 = ... = Am = 0, as required. 
Finally we establish the non-vanishing of a particular determinant; 

the result will play a similar role to Lemma 7 of Chapter 2. 

Lemma 3. If w0 , ••• , w1_ 1 are any distinct non-zero complex numbers 
then the determinant of order kl with irw! in the ( i + 1 )-throw and (j + 1 )-th 
column, wherej = r+sk (0 :s;; r < k, 0 :s;; s < l), isnotzero.t 

t Hf'ro i 0 = t for all i in11lnding i = 0. 
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Proof. The determinant n in question can plainly be expressed as a 
polynomial Q(w0, ... , w1_ 1) in the w's with integer coefficients. We 
write 

and we observe from the Laplace expansion of n, taking minors 
formed from the first k columns, that Q(z) is a polynomial in z with 
degree at most k 

~ (kl-j) = k2l-!k(k+ 1), 
i=l 

and moreover that it has a factor ztk{k-1>. We shall prove in a moment 
that it also has a factor (z- w8 )k

8 for each 8 with 1 :::; 8 < l. This gives 
Z-1 

Q(z) = azik<k-1) II (z- ws)k\ 
8=1 

where a is the coefficient of the highest power of z in Q(z). It is easily 
verified that a is the product of the v andermonde determinant of 
order k with typical element (k(l-1)+i)i, and the determinant of 
order k(l-1) formed like n, that is, with typical element i'w!, where 
now 1 :::; 8 < l. The lemma follows by induction. 

To prove the above" proposition we begin by noting that the mth 
derivative Qm(z) of Q(z) is given by 

~Q'(mo, ... , mk-1• z), 

where the summation is over all non-negative integers m0, ... , mk_1 
with sum m, and Q'(m0, ••• ,mk_1,z) is obtained from Q(z) by replacing 
the element in the ( i + 1 )throw and (j + 1 )th column for j < k by 

i'+l(i-1) ... (i-m,+ 1)zi-m,. 

It suffices now to prove that if m < k2 then the 2k polynomials 
1, x, ... , xk-l and 

x'+l(x-1) ... (x-m,+ 1) (0:::; r < k) 

are linearly dependent; for then some non-trivial linear combination 
of the 2k columns of Q'(m0, ••• , mk-V W8 }, given by 

j < k and j = r + ( 8- 1) k, 

vanishes and so ~(w8) = 0. To establish the linear dependence we 
arrange the degrees of the polynomials in ascending order, say 
n1 :::; n2 :::; ..• :::; n 2k, and we observe that their sum is 

k- 1 
ik(k- I)+ ~ (r+m,) = k(k-1) +m < 2k2 -k. 

r-0 
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Thus we have ni < j -1 for some j; this implies that there are j poly
nomials amongst the original set each with degree at most j- 2, and 
these are certainly linearly dependent. The above argument clearly 
yields an explicit value for Q, but only the non-vanishing is required 
here. 

3. The auxiliary function 
We come now to the proof of Theorem 3.1 and we assume accordingly 
that a 1, .•. , an are non-zero algebraic numbers with degrees and heights 
at most d and A respectively. By 0, c, Cv c2, ... we signify numbers, 
greater than 1, that depend only on n, d, A and the given determina
tions of the logarithms of the a's. We suppose that f30, ... ,fJn-1 are 
algebraic numbers with degrees and heights at most d and B ( ~ 2) 
respectively such that 

lf3o+f31 loga1 + ... +f1n_1 logan_1 -logan\ < B-0 , (1) 

for some sufficiently large C, and we proceed to show that there exist 
then rational integers b~, ... , b~, not all 0, with absolute values at 
most Cv satisfying 

b~loga1 + ... +b~Iogan = 0. (2) 

An inductive argument will then complete the proof of the theorem. 
The subsequent work rests on the construction of an auxiliary 

function analogous to that obtained in Lemma 2 of Chapter 2. We 
signify by k an integer exceeding a sufficiently large number cas above, 
and we write 

h = [log (kB)], L_1 = h -1, L = L0 = ... = Ln = [P-l/(4n>J. 

We adopt the notation of Chapter 2 with regard to partial derivatives. 

Lemma 4. There are integers p(i\_1, • .. , i\n), not all 0, with absolute 
values at most c;k, such that the function 

L-1 L,. 

<l>(zo, · · ·' Zn-1) = ~ · · · ~ p(i\-1, · · ·' i\n) 
.L1 =0 A..=O 

x (.6.(z0 + i\_1 ;hW·o+1 e}.nPozoai'z' ... a~~-rn-t, 

where '}' r = i\r + i\n f3 r ( 1 :!:7; r < n), satisfies 

\<l>mo, ... ,mn->(l, ... ,l)\ < B-iO (3) 

for all integersl with 1 :s;; l :s;; hand all non-negative integers m0, •.• , mn_1 

with m 0 + ... +mn_1 :!:7; k. 
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Proof. We determine the p(i\_1, ... , i\n) such that 

(4) 
for the above ranges of l and m 0, ••• , mn-1> where 

We shall verify subsequently that (4) implies (3). Following the proof 
of Lemma 2 of Chapter 2, and defining the a's and b's and P' as there, 
we derive the same equation involving summation over Bv ... , sn, t0 , ••• , 

tn_1 as arises there, hut with 

£_, L,. m, mn-1 
A(s,t) = ~ ... ~ ~ ... ~ p(i\_1, ... ,i\n)q'q"q'", 

A- 1 =0 A,.=O Jt0 =0 Jln-t=O 

where now 

q'" - (mo) u I ~(l + i\ · h i\ + 1 u ) i\mo-PobPob<mo-po) - flo ro· -1• • o •rO n n o,t0 

and the bV/ have absolute values at most (2B)i. Thus we conclude that 
( 4) will be satisfied if the d2n equations A (s, t) = 0 hold. Now these 
represent M:::; d2nh(k+ 1)n linear equations in the 

N = (L_1 + 1) ... (Ln + 1) 

unknowns p(i\_1, .. . , i\n)· Further, Lemma 1 shows that, after multi
plying by (v(O; 3h))mo, the coefficients in these equations will be 
rational integers. Furthermore we have 

~(l + i\_1; h, i\o + 1, flo) :::; cfh, 

and, since kB :::; eh+1, we see that 

lq'l :::; cfh, lq"l :::; e2h(m.+ ... +mn-t>, 

lq"' l :::; 2mo (flo bn)Po (2Bi\n)'lno-Po cfh :::; e2hmocfh. 

Since also v(O; 3h) :::; c~, it follows that the coefficients have absolute 
values at most U = c~k. Now N > hkn+i > 2M and hence, by Lemma 1 
of Chapter 2, the system of equations A(s, t) = 0 can be solved non
trivially and the integers p(i\_1, ... , i\n) can be chosen to have absolute 
values at most NU:::; c~k. 

It remains only to verify that (4) implies (3). Now the left-hand side 
of ( 4) is obtained from the number on the left of (3), omitting modulus 
signs and a factor 
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by substituting an for a~= efloaf' ... a~n_-l. From (1) we have 

jloga~ -logan! < B-o, 

for some value of the first logarithm and since, for any complex 
number z, jez-11 :::; izl elzl, we obtain 

ja~-ani < B-f;O, (5) 

Also we have 

and estimates similar to those employed above show that 

!PI:::; c:, jq(i\_1,i\o,i\n,l)j:::; c~L+mo>h, iYri:::; eZh, ja;.rlj:::; cfoh. 

Thus we see that the number on the left of (3) is at most NcqfB-!a. 
But clearly N :::; e2hn and h :::; log (kB), and hence (3) follows if 
0 > c12 klogk. 

Lemma 5. Let m0, ••• , mn_1 be any non-negative integers with 

mo + ... + mn-1 :::; k, 

and let f(z) = <1>m
0

, ••• ,mn-I(z, ... ,z). 

Then ,for any number z, we have if(z) I :::; cq:+L!z!. Further,for any integer l 
with h < l :::; hkBn, either if(l)j < B-ia or 

lf(l)j > Cghk{1+1og(l/h))-Ll. 

Proof. The functionf(z) is given by 

X eAnfJ0 z,..,'Y1z ,..,"Yn-tzym' ymn-1 
""1 "· ""n-1 1 "· n-1 • 

(6) 

whereP and q(i\_1, i\0, i\n, z) are defined as in Lemma 4. Now (5) implies 
that ja~zl :::; cfJ and clearly 

Furthermore, since 

l,..,A,z ,..,An-IZl ...- cL!z! ""1 • • · ""n-1 0:::: 16 • 

we deduce from Lemma 1 that 

i~(z+ i\_1; h, i\o + 1,,Uo)l :::; c[7<1zl+h>. 

This gives 

and the required estimate now follows easily as in the latter part of the 
proof of Lemma 4. 
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To prove the second assertion, we begin bynotingthatthe expression 
on the left of (4), say Q, is an algebraic number with degree at mostd2n. 

Further, by estimates similar to those given above, it is readily verified 
that each conjugate of Q, obtained by substituting arbitrary con
jugates for the a's and fJ's, has absolute value at most ci:+Ll. Further
more, from Lemma 1, we see that on multiplying Q by 

(v(l; 2h))rrloP':::; (c19 ljh)4hrrlocfj, 

one obtains an algebraic integer. Hence we conclude that either 
Q = 0 or 

Since m0 :::; k, the number on the right of the last inequality exceeds 
the right-hand side of (6) for some cw Further, as above, we deduce 
easily from (5) that P-1J(l) differs from Q by at most c~B-!a. But if 
l:::; hk8n and 0 > k8n+2, then this is at most f\Q\, and hence, if Q =F 0, 
we obtain \f(l)\ >! \PQ\, which gives (6). 

Lemma 6. Suppose that 0 < e < c-1 for some sufficiently large c. 
Then,for any integer J with 0 :::; J < 8nje, (3) is satisfied for all integersl 
with 1 :::; l :::; hk•J and all non-negative integers m 0, ••• , mn_1 with 
m 0 + ... +mn_1 :::; k/2J. 

Proof. The lemma holds for J = 0 by Lemma 4. We suppose that K is 
an integer with 0 :::; K :::; (8nje)- 1 and we assume that the lemma 
has been verified for J = 0, 1, ... ,K. We proceed to prove the pro
position for J = K + 1. 

Itsuffi.cestoshowthatforanyintegerlwithRK < l:::; RK+landany 
set of non-negative integers m0, ••• , mn_1 with m0 + ... +mn_1 :::; SK-t-1• 
we have \f(l)\ < B-1°, wheref(z) is defined as in Lemma 5, and 

RJ = [hkeJ], SJ = [kj2J] ( J = 0, 1, ... ). 

From our inductive hypothesis we deduce, as in Lemma 4 of Chapter 2, 

that \fm(r)\ < nkB-iC (1 :::; r :::; RK, 0 :::; m:::; SK+l). (7) 

We write, for brevity, 

F(z) = {(z-1) ... (z-Rx)}S+l, 

where s = SK+V and we denote by r the circle in the complex plane, 
described in the positive sense, with centre the origin and radius 
R=RK+1k11<8n>. By Cauchy's residue theorem we have 

_1 f f(z)dz =f(l) +-1 ~ f fm(r)f (z-r)mdz 
211'i r(z-l)F(z) F(l) 211'ir-tm-o ml r,(z-l)F(z)' (S,\ 
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where rl' denotes the circle in the complex plane, described in the 
positive sense, with centre r and radius-!; for the residue of the pole 
of the integrand on the left at z = r is given by 

~ d8 {(z-r)8 +1f(z)} 
S! dz8 (z-l)F(z) , 

evaluated at z = r, and the integral over rr on the right is given by 

21Ti d8-m { (z- r)8 +1 } 
(S-m)!dzS-m (z-l)F(z)' 

again evaluated at z = r, and (8) now follows by Leibnitz's theorem. 
Since, for z on rr, 

i(z-r)m/F(z)i :!:7; {l(Rx-r-1)! (r-2)!}-8 - 1 ~ 8RxB(RK!)-8 -1, 

we deduce from (7) that the absolute value of the double sum on the 
right of (8) is at most 

RK(S + 1) 8RxS+l (Rx!)-S-1 B-10. 

Further, for Rx < l :s;; RK+l• we have 

IF(l)l = {(l-1)!/(l-RK-1)!}8+1 :s;; (2Rx+~Rx!)B+1, 

and, since Rx+1 :s;; hk;Sn, we see that if (6) holds then lf(l)i > B-ta, 

whence the number on the right of(8) exceeds i lf(l)/F(l)j. We proceed 
to show that the assumption that (6) is valid leads to a contradiction. 

Let(} and 0 denote respectively the upper bound of lf(z)j and the 
lower bound of jF(z)j with z on r. Since 2jz-lj with zon r exceeds the 
the radius of r, we obtain from (8) 

48jF(l)i > 01/(l)l. (9) 

Now clearly we have 0 ~ (tR)Rx!S+l) and thus 

log (0!F(l) j-1) ~ Rx(S + 1) log (tktl<sn>). ( 10) 

Further, from Lemma 5, we see that(} :s;; cq:+ LR and so, by virtue of ( 6), 

log(8jf(l)j-1) :s;; c25{LR+hklog(Rx+lfh)}. (11) 

But the number on the right of (10) is at least 

2-K-6n-1h!c•K+I log k, 

and that on the right of ( 11) is at most 

c26 hk{e(K + l)loglc +/c"(KtlH1<11">}. 
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If e-1 > c > 27nc25 and k is sufficiently large, the estimates are plainly 
inconsistent. The contradiction implies the validity of (3) and the 
lemma follows by induction. 

Lemma 7. For all integers l with 0 ~ l ~ hlc4n we have 

Proof. From Lemma 6 we see that (3) holds for all integers l with 
1 ~ l ~ X and all non -negative integers m0 , ••. , mn_1 with 

mo+ ... +mn-l ~ Y, 

where X= [hk7n], Y = [c;./k], 

and c26 = 28nfe. It follows as in the proof of Lemma 6 that 

f(z) = <I>(z, ••. , z) 

satisfies 

Now let l be any integer with 0 ~ l ~ hk4n and define 

E(z) = {(z-1) ... (z-X)}Y+I, 

(13) 

with the proviso that the factor (z-lfk) is excluded if lfk is an integer. 
Denoting by r the circle in the complex plane, described in the 
positive sense, withcentretheoriginandradiusR = Xkli(Bn>, we deduce 
from Cauchy's residue theorem 

1 f f(z) dz f(lfk) 1 X, Y fm(r)f (z- r)m dz 
21Ti r(z -l/k) E(z) = E(lfk) + 21Tir~1 m~o m! r. (z -lfk) E(z)' 

where the dash signifies that r = lfk, if an integer, is excluded from the 
summation, and r r denotes the circle in the complex plane, described 
in the positive sense, with centre rand radius 1/ (2k). Since, for z on r r• 

j(z-r)mfE(z)j ~ {(SkX)-1 (X -r-1)! (r- 2)!}-Y-1 ~ saxY(X!)-Y-1, 

it follows from ( 13) that the absolute value of the double sum on the 
right of the above equation is at most 

X(Y + 1) ssxY(X!)-Y-1 B-lo. 

Further, byvirtueofLemma5,wehave, foranyzonr, Jf(z)j < cq~+LR, 
and it is clear that jE(z)j ~ (!R)(X-l)(Y+I>, 

jE(lfk)J ~ (2X)X(Y+l) ~ SX(Y+l>(X!)Y+l. 
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Thus we obtain 

\f(lfk)\ < cff+LR (8-3kl/(Snl)-XY + B-iO, 

and, since Lk11<Bn) < k, we deduce easily that the number on the right 
is at most e-XY. 

Now clearly the left-hand side of (12), say Q, is an algebraic number 
with degree at most (dk)n, and each conjugate has absolute value at 
most c~rn. Further, it is readily verified that on multiplying Q by 

(a a )Ll Jc2h(L+ll ~ chk&nu 
l"' n ~ 28 

one obtains an algebraic integer; for certainly the denominator of 
either khfh! or ~(A._1 + lfk; h), expressed in lowest terms, is free of a 
given prime p according asp does or does not divide k. Thus, if Q =T= 0, 
we have \Q\ > c2rlk6

n. But it is easily seen from (5) that 

\Q-f(lfk)\ < B-!o, 

whence \f(lfk)\ > -! \Q\. The estimate for \Q\ given a,bove is plainly 
inconsistent with the upper bound e-XY for \f(lfk)\ obtained earlier, 
and thus we conclude that Q = 0, as required. 

4. Proof of main theorem 
First we observe that, by virtue of Lemma 2, the polynomials 

(~(i\_1 +x; h))Ao+1 (0 ~ A._1 ~ L_1, 0 ~ i\0 ~ L 0) 

are linearly independent over the rationals. Thus, on writing 

L-• Lo L' 
~ ~ p(i\_1, ... , A.n) (~(i\_1 + x; h))Ao+1 = ~ p'(A.', i\1, ... , An) xi\', 

A- 1 =0 .\0 =0 .\'=0 

whereL' = h(L+ 1), weseethatoneatleastoftheL" = (L' + 1) (L + 1)n 
numbers p' (A.', i\1, ... , An) is not 0. Now ( 12) can be written in the form 

L' L. Ln 
~ ~ ... ~ p'(A.', Al, ... , An) (lfk)A' (cxrl/k ... a!nlk)l = 0, 

i\'=0 .\•=0 An=O 

and, by Lemma 7, the equation holds in particular for 0 ~ l ~ L". It 
follows that the determinant of order L", given by the terms involving 
l only, vanishes. But the determinant is of the kind indicated in 
Lemma 3, and thus we conclude that 

,..iltfk ,..ii.,.Jk - ,.ill' !k ,..il',.lk 
""I ·•• ""11 -""I ••• ""n 
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for some distinct sets i\.11 ••• , ,\n and i\.i, ... , i\.~. This gives 

b~loga1 + ... +b~logan = (27Ti)jk 

forsomerationalintegerj, whereb; = i\.r-i\.;· Clearlywehavelb;l ~ 2L, 
and since L ~ k1- 11<4n> it follows that the number on the left has 
absolute value less than 27Tk. Hence we conclude that j = 0, and so 
(2) holds, as required. 

The proof of the theorem is now completed by induction. Suppose 
that ,80, ... ,,Bn are given as in the enunciation and that 0 < IAI < B-20 

for some sufficiently large 0. Then one at least of ,81, ... , .Bn is not 0, 
and we shall assume that in fact .Bn =I= 0. By the preliminary observa
tions in §2, we see that (1) holds with ,81 (1 ~j < n) replaced by 
,Bj = - ,81/ .Bn and further that the ,Bj have degrees at most d2 and heights 
at most B' ~ Be for some c depending only on d. Hence we conclude 
that (2)holdsforsomeb~, ... , b~asindicatedin§ 3.Nowifb; =I= Owe have 

0 < IA'I < c1B-0 , 

where A' is obtained from A by replacing ,81 with 

,8j' = b;,B1-bj,Br (0 ~j < n), 

b~ being defined as 0. Further, the observations in§ 2 show that ,8;' has 
degree at most d2 and height at most B" ~ Be for some c = c(n, d, A). 
Furthermore we have p; = 0. But the theorem is plainly valid for 
n = 0, and if we assume that it holds for fewer than n logarithms then 
the above shows that it will also hold for n logarithms. This establishes 
the result. 

It will be noted that the inductive argument would not be needed if 
log a 1, .•. , log an were linearly independent over the rationals, and 
moreover Lemma 7 would not be required if a 1, ... ,an were multipli
catively independent. 
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DIOPHANTINE EQUATIONS 

1. Introduction 
Diophantine analysis pertains, in general terms, to the study of the 
solubility of equations in integers. Although researches in this field 
have their roots in antiquity and a history of the subject amounts, 
more or less, to a history of mathematics itself, it is only in relatively 
recent times that there have emerged any general theories, and we 
shall accordingly begin our discussion in 1900 by referring again to 
Hilbert's famous list of problems. 

The tenth of these asked for a universal algorithm for deciding 
whether or not a given Diophantine equation, that is, an equation 
f(x1, ••• , x,.) = 0, wheref denotes a polynomial with integer coefficients, 
is soluble in integers x1 , ... , Xn. Though Hilbert posed his question in 
terms of solubility, there are, of course, many other sorts of informa
tion that one might like to have in this connexion; for instance, one 
might enquire as to whether a particular equation has infinitely 
many solutions, or one might seek some description of the distribution 
or size of the solutions. In 1970, Matijasevic, t developing work of 
Davis, Robinson and Putnam, t proved that a general algorithm of 
the type sought by Hilbert does not in fact exist. A more realistic 
problem arises, however, if one limits the number of variables, and for, 
in particular, polynomials in two unknowns our knowledge is now 
quite substantial. 

A full account of the early results in this field is furnished by 
Dickson's celebrated History of the theory of numbers; here references 
are given to a diverse multitude of Diophantine problems that were 
investigated by a wide variety of ad hoc methods mainly during the 
last two centuries. The first major advance towards a coherent theory 
was made by Thue§ in 1909 when he proved that the equation 
F(x, y) = m, where F denotes an irreducible binary form with integer 
coefficients and degree at least 3, possesses only a finite number of 
solutions in integers x, y. Thue established the result by way of his 

t D.A.N. 191 (1970), 279-R2. 
§ J.M. 135 (1909), 284-30Ci. 

r so 1 

: Ann. Math. 74 (1961), 42Ci-36. 
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fundamental studies on rational approximations to algebraic num hers; 
on writing the equation in the form 

a(x-a1 y) ... (x-any) = m, 

one sees that one of the zeros a of F(x, 1) has a rational approximation 
xfy (y > 0) with Ia- xfyl < cfyn for some c depending only on F and m, 
and Thue showed that this is impossible if y is sufficiently large. t 
Thue's work was much extended by Siegelt in 1929; Siegel proved that 
the equation f(x, y) = 0, where f denotes a polynomial with integer 
coefficients, has only a finite number of solutions in integers x, y if the 
curve it represents has genus 1 or genus 0 and at least three infinite 
valuations; otherwise the curve can be parameterized and there are 
then infinitely many so-called 'ganzartige' solutions, that is, algebraic 
solutions with constant denominators. Siegel's work depended upon, 
amongst other things, an improved version of Thue's approximation 
result which he obtained in 1921,§ and the famous Mordell-Weil 
theorem, n proved in 1928, on the finiteness of the basis of the group of 
rational points on the curve. The work ofThue and Siegel satisfactorily 
settles the question as to which curves possess only finitely many 
integer points and, moreover, it yields an estimate for the number of 
points when finite. But it throws no light on the basic Hilbert problem 
as to whether or not such points exist and, even less therefore, does it 
provide an algorithm for determining their totality; for the arguments 
depend on an assumption, made at the outset, that the equation has 
at least one large solution. and this is purely hypothetical. Another 
proof of Thue's theorem, under a mild restriction, was given by 
Skolem'll in 1935 by means of a p-adic argument very different from 
the original, but here the work depends on the compactness property 
of the p-adic integers and so is again non-effective. 

Our purpose here is to apply the work of Chapter 3 to effectively 
resolve a wide class of Diophantine equations. In particular we shall 
treat the Thue equation F(x, y) = m defined over any algebraic 
number field, the famous Mordell equation y2 = x3 + k, to which, 
incidentally, there attaches a history dating back to Bachet in 1621, 
and we shall obtain an effective algorithm for determining all the 
integer points on an arbitrary curve of genus 1. Our theorems will be 
proved in an essentially qualitative form, but it will be apparent that 

t Sec Chapter 7. 
§ M.Z. 10 (1921), 173--213. 
'If M.A. Ill (1936), 399--424. 

: Abh. PreUBa. Akad. Wiss. (1929), no. 1. 
II Acta Math. 53 (1928), 281-315. 
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they can be adapted to yield explicit bounds for the sizes of all the 
solutions of the equations. A summary of quantitative aspects of the 
work is given in the last section. 

2. The Thue equation 
Let K be an algebraic num her field with degree d, let a 1, ••• , an ben ;;.:: 3 
distinct algebraic integers inK, and let p be any non-zero algebraic 
integer inK. We prove: 

Theorem 4.1. The equation 

(X- a 1 Y) ... (X- anY) = p 

has only a finite number of solutions in algebraic integers X, Yin K and 
these can be effectively determined. 

We define the size of any algebraic integer() inK as the maximum 
of the absolute values of its conjugates, and we signify the size of fJ 

by 11811. With this notation, we shall in fact show how one can obtain 
an explicit bound for IIXII and II Yll for all X, Y as above. The bound 
can be expressed in terms of d and the maximum of the heights of 
a 1, ..• , an, p and some algebraic integer generating K; we shall denote 
by c1, c2, ••• positive numbers that can be specified in terms of these 
quantities only. We shall assume that K has s conjugate real fields 
and 2t conjugate complex fields so that d = s + 2t; further we shall 
signify by {}<1>, ••• , ()<d> the conjugates of any element () of K, with 
{}<1>, •.. , {}<s> real and ()<s+1>, •.• , (J<s+t> the complex conjugates of (}(s+t+1>, .•• , 
(J<d> respectively. The subsequent arguments rest on the well-known 
result, dating back to Dirichlet, that there exist r = s+t-1 units 
7J1, ••• , "'rinK such that 

1log l"'iil1J < c1 (1 ~ i,j ~ r) 

and 1~1 > c2, where ~ denotes the determinant of order r with 
log l"'~i> I in the ith row and jth column. t 

We suppose now that X, Yare any algebraic integers inK satisfying 
the given equation and we write, for brevity, 

jli =X- ai Y (1 ~ i ~ n). 

We denote by Nj3i.the field norm of f3-t and we put mi = !Nf3-tl• so that 
m1 .•. mn = IN PI· We proceed first to show that an associate 1'i of jli 

t Cf. Hooko (Bibliography). 
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can be determined such that 

39 

(1) 

This follows in fact from the observation that every point Pin r-dimen
sional Euclidean space occurs within a distance c4 of some point of the 
lattice with basis 

(log i?J~1l I, ... , log i?Jirl I) ( 1 ~ i ~ r). 

On taking Pas the point 

(log IP?>i, ... ,log IP~r>i), 

we deduce that there exist rational integers bi1, ... , bir such that 

'Yi = ft-t?Jfit •• ·?J~ir 

satisfies (1) for 1 ~ j ~ r, with c4 in place of c3, and since 

IY~i+t)l = IY~1)1 (8 < j ~ 8 + t), 

(2) 

the same holds for 1 ~ j ~ d except possibly for j = 8 + t and j = 8 + 2t 
(only one of which exists ift = 0). But we have 

IY~1l · · · y~dl I = mi, 1 ~ mi ~ IN Pi ~ Cs, 

whence (1) holds for allj, as required. 
Now let Hi= max lbiil and let l be a suffix for which II,= max Hi. 

The equations 

logiy~:i>jp~:i>i =bi1 logi?Jr>i+···+birlogi?J~>i (1 ~j ~ r) 

serve to express each number tibii as a linear combination of the 
numbers on the left with coefficients given by cofactors of 6., and thuH 
the maximum of the absolute values of these numbers exceeds c8/li. 
Let the maximum be given by j = J. Then from (1) we have 

llog IPV>ii = I log IPV>fyf>i +log iyf>ii > c6Hi-ca, 

and, since 1Pi1> ... Pid>i = mi, it follows that 

loglfJ~hi>i < -(c8~-c3 -logmi)/(d-1) 

forsomehi. Thus,if.Hj > c7, wehave ifJJh>i < e-csHl for some h. Further, 

since Pfhl ... p<;:> = ,uCft>, 

we obtain IPLhll > c9 for some k =Fl. We takej to be any suffix other 
thank or l; this exiHtR Rinc<', by hypothesis, n ;;?!: 3. 

BTN 
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We may now, for simplicity, omit the superscript hand assume that 
a\h> =a. jJ(h> = fJ From the identity 

~ ~· ~ i• 

we obtain 

where 

w = (ak-aJ)fJz"!k 
(ak-az)fJkY/ 

On noting that, for any complex number z, the inequality jez- 11 < ! 
implies that 

1z-ib11l < 4j&-1j, 

for some rational integer b, we deduce easily, on taking 

z = b1 log'1}1 + ... +br1og?Jr-1oga, 

where the logarithms have their principal values, that, if lw/a[ < !, 
then !AI < 4lwJaj, where A= z-blog ( -1). Clearly w + 0 and so also 
A+ 0. Further we see that jb1[ ~2Hz for allj, and so the imaginary 
part of z has absolute value at most 1rB, where B = 4rllz. Thus we 
have jb[ ~ B, and certainly [b1[ ~B. Furthermore, from the estimates 
for fJk = fJ~'> and /11 = fJfM given above, we see that, if liz > c10, then 

4jwJal < clllflzlfikl < e-cuB, 

But '1)1 , ••. , ?Jr and a have degrees at most d, and their heights are 
bounded above by a number c13• Hence Theorem 3.1 gives [A[ > B-0 

for some 0 as above, and from this and our estimate [A[ < e-cl2B we 
conclude thatB < Cw whence H; < c15. It follows from (1) and (2) that 

llfJill < & 16H 1 < cl7• 

and now the equations 

X = a2f11- a1f12 
a2-al ' 

and their conjugates clearly imply the validity of Theorem 4.1. 

3. The hyperelliptic equation 
As in § 2, we signify by K an algebraic num her field with degree d. We 
suppose that a 1, ... , an are n ~ 3 algebraic integers in K with, say, 
a 1, a 2, a 3 distinct, and we prove: 
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Theorem 4.2. The equation 

Y2 =(X-~) ... (X -an) (3) 

has only a finite number of solutions in algebraic integers X, Yin K and 
these can be effectively determined. 

We shall establish Theorem 4.2 from Theorem 4.1 by a method of 
Siegel, t and again it will be clear that the arguments enable one to 
furnish explicit bounds for II XII and II Yll· The conclusion of Theorem 
4.2 plainly remains valid if a non-zero factor in K is introduced on the 
right of (3), and thus the theorem covers, in particular, the elliptic 
equation 

y2 = axS+bx2+cx+d, 

where all quantities signify rational integers. In this case, however, 
the result can be derived from Theorem 4.1 by a readier method, due 
to Mordell, involving the theory of the reduction of binary quartic 
forms.t 

Suppose now that X, Y are non-zero algebraic integers in K 
satisfying (3). We show first that there exist algebraic integers 
;i, 1Ji• Si (j = 1, 2, 3) in K with 

X -a1 = (sif1Ji) s~, (4) 

max (llsJII, II1JJII) < cv 

where c1, like c2, c3, ••• , denotes a positive number specified as in § 2, 
that is, depending only on d and the maximum of the heights of 
a 1, ... ,an and some algebraic integer generating K. For simplicity we 
write a = a1, and we observe that, by virtue of the ideal equation 

[Y2] = [X-a1l ... [X -a,.], 

we have [X-a] = ao2 

for some ideals a, oinK, where a divides 

I1 [a-ai]. 
Hi 

Further, there exist ideals a', b' in the ideal classes inverse to those 
of a, o respectively with norms at most c2, and clearly aa' and a'b'2 

are principal ideals; the latter are therefore generated by algebraic 
integers S', r( in K with 

INS'l ~ c2 Na, IN1J'I ~ c~. 

t .J. London Math. Soc. 1 (1926), 66--8. 
t ./. J.owlon Math. Soc. 43 (t96H), t-9. 
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Furthermore, since Na ~ II N[a-a1] < c3 , 
i,Jpj 

it follows easily, as in the derivation of (1), that there exist associates 
g", rJ" off, rJ' respectively satisfying 

max (!ls"ll, llrJ"ii) < c4. 

Now oo' is principal and is therefore generated by some algebraic 
integer{;' inK. Hence from the equation 

we obtain 

(a'o'2) [X -a]= (aa') (oo') 2 

X -a= 6(;"/'f/"){;'2, 

where 6 denotes a unit in K. By Dirichlet's theorem there exists a 
fundamental system 61, ••• , 6, of units in K satisfying 

and we have 

for some rational integers jv ... ,jr and some root of unity p; it is now 
clear that the numbers ;, 'fj, {;given by 

l:"peil. ei; '¥1" Y' el<icii> el<Jr-;;.> 
b 1 • · · r • ., • b 1 • • • r 

respectively, wherej~ = 0 or 1 according asji is even or odd, have the 
required properties. 

On eliminating X from (4) we obtain three equations of the form 

u 2{;i-u3 {;: = a3-a2, 

where u1 = f,1j'fj1 (j = 1, 2, 3). Further, on writing 

P1 = ul{;2- u!?;a 
for any choice of the square roots, and defining P2, Pa similarly by 
cyclic permutation of the suffixes, we have 

(5) 

Now p1 is a non -zero element of the field generated by ul and u! over K; 
further, on multiplying by 8 = 'f/1 7J27J3, one obtains an algebraic integer 
with field norm having absolute value at most c8 • It follows easily, as 
above, that 8P1 = Pi ef for some unit 6 1 in the field and some associate 
Pi with IIPi.ll < c7 ; and, after permutation of suffixes, the same holds 
for P2, Pa· Thus (5) gives 

Pi.ef+fi~,,.~+P~~ = o, 
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and, on multiplying by f1~2je~, this becomes a Thue equation 

xa-A_ya = p, 

where 

43 

Hence, by Theorem 4.1, llxll and IIYII are at most c8, and it remains only 
to show that II XII and II Yll are likewise bounded. 

Fixing the choice of the sign of o"l, one can plainly select the sign of 
ul in f13 so that leal < c9 • Then the bound IYI < c8 established above 
gives Je1 J < c10, whence, since J8J > Cw we obtain lf11 J < c12 • But this 
holds for either choice of the sign of o-J and thus we conclude that both 
J{;'2 J and J{;'3l are at most c13 • It is now apparent from (4) that lXI < c14 ; 

on commencing with the equations conjugate to (3) we derive the same 
bound for each conjugate of X, and the theorem follows. 

4. Curves of genus 1 

Let j(x, y) be an absolutely irreducible polynomial with integer 
coefficients such that the curvef(x, y) = 0 has genus 1. We prove: 

Theorem 4.3. The equation j(x, y) = 0 has only a finite number of 
solutions in integers x, y and these can be effectively determined. 

As mentioned in § 1, the first part of the theorem was initially 
established by Siegel in 1929, but his method of proof was ineffective. 
The argument we shall give here, which is based on a birational 
transformation that reduces the equation to the canonical form con
sidered in Theorem 4.2, provides an effective and simpler proof of 
Siegel's theorem in the case of curves of genus 1; but it does not seem 
to extend easily to curves of higher genus. 

We shall denote by 0, O(x) and K respectively the field of all 
algebraic numbers, the field of rational functions in x with coefficients 
in 0, and the finite algebraic extension of O(x) formed by adjoining 
a root of f(x,y) = 0. By the Riemann-Roch theorem, there exist 
rational functions xl, x2 on the curve with orders -2, - 3 respectively 
at some fixed infinite valuation, say Q, of K, and with non-negative 
orders at all other valuations of K; moreover, one can effectively deter
mine the algebraic coefficients in their Puiseux expansions. We now 
observe, following Chevalley, that the seven functions 1, X 1, X 2, X~, 

Xi, Xf, X1 X2 have poles of order at most 6 at Q and so, by the 
Riemann-Roch theorem again, they are linearly dependent over 0. 
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Let p 1, ... ,p7 be the respective coefficients in the linear equation 
relating them; clearly we have Po =!= 0, for the six functions excluding 
X~ have distinct orders at Q. On writing 

X= X~> Y = 2p0 X2 +p7 X1 +p3, 

we obtain Y2 = aX3 +bX2+cX +d, 

where a, b, c, dare polynomials in p 1, ••• ,p7 with integer coefficients. 
The cubic on the right has distinct zeros, for if the equation reduced to 

{Yj(X -a)}2 = a(X-fJ), 

then Yj(X -a) could possess a pole only at Q; but, since X1, X 2 have 
orders - 2, -3 respectively at Q and Po =!= 0, the function has in fact 
a pole of order 1 at Q, contrary to the Riemann-Roch theorem. 

We observe now that, since X~> X 2 are rational functions ofx, y with 
coefficients in a fixed field, the functions X, Y become algebraic 
numbers in a fixed field when x, yare rational integers. Moreover, there 
exists a non-zero rational integer q, independent of x andy, such that 
qX and qY are algebraic integers; for the function X= X 1 has a pole 
only at the infinite valuation Q and thus the equation satisfied by X 
over il(x) has the form 

Xm+P1(x) Xm-1 + ... +Pm(x) = 0, 

where m is the degree off in y and P1, ••• , Pm are polynomials in x with 
algebraic coefficients and degree at most 2. We conclude from Theorem 
4.2 that X, Y can take only finitely many values when x, yare rational 
integers. On noting again that X has a pole at Q, it follows at once that 
there are only finitely many x, and, in view of the initial equation 
f(x, y) = 0, so also finitely many y. Further, it is readily confirmed 
that all the arguments employed above are, in principle, effective, 
and this proves Theorem 4.3. 

The method of proof can easily be extended to treat curves of genus 
0 when there exist at least three infinite valuations, and this together 
with the above result enables one to resolve effectively the general 
cubic equation f(x, y) = 0; the latter can, however, be reduced more 
directly to the form considered in Theorem 4.2. 

5. Quantitative bounds 
As remarked earlier, the arguments employed here enable one to 
furnish explicit upper bounds for the size of all the solutions of the 
above equations. To calculate these bounds one needs first a quantita-
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tive version of Theorem 3.1, and, in this connexion, the most useful 
resultt so far established reads: 

If a 1, ••• , 1Xn are n ~ 2 non-zero algebraic numbers with degrees and 
heights at most d ( ~ 4) and A ( ~ 4) respectively, and if rational integers 
b1, ••• , bn exist with absolute values at most B such that 

0 < jb1 log1X1 + ... +bnloganl < e-8B, 

where 0 < 8 ~ 1, and the logarithms have their principal values, then 

B < ( 4n18-ld2n log A )(2n+l)2. 

By applying this together with certain estim.ates for units in algebraic 
number fields, it has been shown that all solutions X, Y of the Thue • 
equation referred to in Theorem 4.1 satisfy 

max (!lXII, II Yll) < exp{(dH)<lOdJii}, 

where H denotes the maximum of the heights of IX1, ••• , 1Xn, p, and some 
algebraic integer generating K.~ This leads to the bound 

expexpexp (d10d
1 Hd1) 

for the sizes of all solutions X, Y of the hyperelliptic equation 
discussed in Theorem 4.2. Further, employing the latter estimate and 
an effective construction for rational functions,§ it has been proved 
that all integer points x, y on the curve j(x, y) = 0 of Theorem 4.3 

satisfy max(jxj, jyj) < expexpexp{(2H)1on10
}, 

where H denotes the maximum of the absolute values of the coefficients 
off and n denotes its degree. 0 

In special cases one has stronger bounds. For instance, for the 
elliptic equation mentioned after the enunciation of Theorem 4.2, the 

estimate max (jxl, jyj) < exp{(10BH)l06
} 

has been established, where a, b, c, d are assumed to have absolute 
values at most H; and for the Mordell equation y2 = x3 + k, it has been 
shown, by way of an expression for Gin terms of n similar to that 
recorded after Theorem 3.1, that the bound exp (c jkjl+•) is valid for 
any e > 0, where c depends only on e.~ Furthermore, techniques have 
been devised which, for a wide range of numerical examples, render the 
problem of determining the complete list of solutions in question 
accessible to machine computation; thus, for example, it has been 
proved that the only integer solutions of the pair of equations 
t Mathematika, 15 (1968), 204--16. 
t Phil. Trans. Roy. Soc. London, Al63 (1968), 173-91; P.O.P.S. 65 (1969), 439-44. 
§ P.O.P.S. 68 (1970), too-23 (J. CoateH). II P.O.P.S. 67 (1970), 595-602. 
~ Acta Arith. 24 (1973), 2111 II (H. St1uk). 
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3x2- 2 = y2 and 8x2-7 = z2 are given by x = 1 and x = 11, and that 
the equation y2 = x3 - 28 has only the solutions given by x = 4, 8, 37 
(the corresponding values of y being ± 6, ± 22, ± 225 respectively). t 

Much interest attaches to the size of the solutions of the original 
Thue equation F(x, y) = m (see §1) relative to m. As a consequence of 
the third inequality for IAI recorded after the enunciation of Theorem 
3.1, the arguments leading to Theorem 4.1 show that, if m;;::: 2, then 
lxl and IYI cannot exceed m0 for some computable 0 depending only 
on F.~ This yields at once an improvement on Liouville's theorem; 
indeed, with the notation of Theorem 1.1, we have 

ia-pfqi > cjqK 
for all rationals pjq (q > 0), where c, K are positive numbers, effectively 
computable in terms of a, with K < n. The result, in slightly weaker 
form, was first established§ in 1967, particular cases, however, having 
been obtained a few years earlier by means of special properties of 
Gauss' hypergeometric function.n For instance it had been proved~ 
that when a is the cube-root of 2 and 17 then the above inequality 
holds with c = 10-6, K = 2·955 and c = 10-9, K = 2·4 respectively, 
values in fact that are almost certainly sharper than those given by 
the more general techniques. But, leaving aside the effective nature 
of c, much more about rational approximations to algebraic numbers 
is known from the field of research begun by Thue, and this will be the 
theme of Chapter 7. 

Various other equations can be treated by the methods described 
here. They can be used, for instance, to give bounds for all solutions 
in integers x, y of the equation ym = f(x), where m > 2 andf denotes 
any polynomial with integer coefficients possessing at least two distinct 
zeros; in particular, they enable one to solve effectively the Catalan 
equation xm-yn = 1 for any given m, n.tt Moreover, they can be 
generalized by means of analysis in the p-adic domain to furnish all 
rational solutions of the equations F(x, y) = m and y2 = x3 + k whose 
denominators are comprised solely of powers of fixed sets of primes; 
thus, more especially, they yield an effective determination of all 
elliptic curves with a given conductor. U 

t Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-37; J. Number Th. 4 (1972), 107-17. 
t I.A.N. 35 (1971), 973-90. 
§ Phil. Trans. Roy. Soc. London, A 263 (1968), 173-91. 
II Proc. London Math. Soc. 4 (1964), 385-98. 
'If Quart. J. Math. Oxford Ser. (2) 15 (1964), 375-83. 
tt P.O.P.S. 65 ( 1969), 439-44. In fact R. Tijdemanhasrecentlyshown that they enable 

one to give an effective bound for all solutions x, y, m, n of the Catalan equation. 
U Acta Arith. 15 (1969), 279-305; 16 (1970), 399-412, 425-3Ci (J. Coates). 
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CLASS NUMBERS OF IMAGINARY 
QUADRATIC FIELDS 

1. Introduction 
The foundations of the theory of binary quadratic forms, the fore
runner of our modern theory of quadratic fields, were laid by Gauss in 
his famous Disquisitiones Arithmeticae. Gauss showed, amongst other 
things, how one could divide the set of all binary quadratic forms into 
classes such that two forms belong to the same class if and only if there 
exists an integral unimodular substitution relating them, and he 
showed also how one could combine the classes into genera so that two 
forms are in the same genus if andonlyifthey are rationally equivalent. 
He also raised a number of notorious problems; in particular, in Article 
303, he conjectured that there are only finitely many negative discrimi
nants associated with any given class number, and moreover that the 
tables of discriminants which he had drawn up in the cases of relatively 
small class numbers were in fact complete. The first part of the con
jecture was proved, after earlier work of Heeke, Mordell and Deuring, 
by Heilbronnt in 1934, and the techniques were later much developed 
by Siegel and Brauer to give a general asymptotic class number 
formula; but the arguments are non-effective and cannot lead to a 
verification of the class number tables as sought by Gauss. In 1966, 
two distinct algorithms were discovered for determining all the 
imaginary quadratic fields with class number 1, which amounts to a 
confirmation of the simplest case of the second part of the conjecture. 

Theorem 5.1. The only imaginary quadratic fields Q(,J(- d)) with 
class number 1, where d is a square-free positive integer, are given by 
d= 1,2,3,7,11,19,43,67,163. 

One of the original methods of proof, and that which we shall adopt 
here, is based on the work of Chapters 2 and 3 together with an idea 
of Gelfond and Linnik; t the other is due to Stark§ and is motivated by 
an earlier paper of Heegner 11 which related the problem to the study of 

t Quart. J. Math. O:z:ford Ser. 5 (1934), 15~60. 
t D.A.N. 61 (194R), 773-6. 
§ Michjgan Math. J. 14 (1967), 1-27. II M.Z. 56 (1952), 227-53. 

r 47 1 
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elliptic modular functions and the solution of certain Diophantine 
equations. The former method has recently been extended to resolve 
the analogous problem for class number 2, and we shall describe the 
solution in § 5. Neither method, however, would seem to generalize 
readily to higher class numbers. 

Nevertheless, transcendental number theory has led to new results 
in several associated subjects. For instance, it has been used by 
Anferteva and Chudakovt to make effective certain theorems of 
Linnik on the average of the minimum of the norm function over 
ideals in a given class, and it has been employed by Schinzel and the 
author in studies relating to the 'numeri idonei' of Euler.t Further
more, it has been applied to resolve in the negative a well-known 
problem of Chowla as to whether there exists a rational-valued 
function f(n), periodic with prime period p, such that 'J:.f(n)fn = O.§ 
In fact it has provided a description of all such functions/that take 
algebraic values and are periodic with any modulus q; thus, in parti
cular, it has revealed that the numbers L(1, x) taken over all non
principal characters X (mod q) are linearly independent over the 
rationals, provided only that (q, rp(q)) = 1, and this plainly generalizes 
Dirichlet's famous result on the non-vanishing of L(1, x). It would be 
of interest to know whether the theorem remains valid when 

(q, rp(q)) > 1. 

Some further results will be mentioned in § 5. 

2. £-functions 
We record here some preliminary observations on products of 
Dirichlet's L-functions. 

Let - d < 0 and k > 0 denote the discriminants of the quadratic 
fields Q(-J(- d)) and Q(-Jk) respectively, and suppose that (k, d) = 1. 
Let 

x(n) = (~). x'(n) = (~d) 
be the usual Kronecker symbols. Then, for any s > 1, we have 

L(s, X) L(s, xx') = l L L x(f)J-s, (1) 
I x.u 

where x, y run through all integers, not both 0, and 

f = f(x, y) = ax2 +bxy+cy2 

t Mat. Sb. 82 (1970), 55-66; = 11 (1970), 47-58. 
t Acta Arith. 18 (1971), 137-44. § J. Number Th. 5 (1973), 224-36. 
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runs through a complete set of inequivalent quadratic forms with 
discriminant -d. To verify this assertion, we observe that the left
hand side of ( 1) is given by 

L L - - (mn)-s = L - z-sL -00 00 (k) (-~ 00 (k) (-~ 
m=ln=l m n l=l l nil n ' 

and the last sum is one half the number of representations of l by the 
formsj.t 

Now the right-hand side of (1) can be written 
co co co 

L L x(ax2) (ax2)-s + L L L x(f)j-s. 
I x=l I u=l x=-co 

The first term here is 

{;"(2s) TI (1-p-28) L x(a) a-s, 
Pik I 

and the second term can be expanded as a Fourier series 

where 

and 

00 

L L Ar(s) e1Tirbl<ka>, 
I r=-oo 

g = g(v) = a(x+vy)2+ (dj4a)y2, 

so thatj = g(bj2a). On substituting u for v by the equation 

x+vy = uy(.jdf2a), 

writing x = m+kyn, where 0 ~ m < ky, and interchanging the order 
of integration and summation, as one may by dominated convergence, 
one obtains 

where 

and 

co 

A
7
(s) = k-1 a-8(-.jdj2a)l-28 ]

7
(s) L U'(y)y-28 , 

u=l -J 00 e-1Tiurv d/(ka) 
Ir(s)- ( 2 1)s du 

-oo U + 
ku-1 

U'(y) = L x(f(m,y))e21Tirml<ku>; 
m=O 

the integral in fact arises from summation over n of the partial 
integrals from en to en-H• where 

en= 2a(m+kyn)f(y.jd). 

t Soo Larulo.u'~ VorlPHltn(lt'n iillPr 7-nhlmtheor·ip. (LI'ipziJ<', I 927), Satz 204. 
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On putting m = j + kl, where 1 :s:; j :s:; k, one sees that 

k 
a-(y) = y L x(f(j, y)) e2trirJJ<k11> 

i=l 

if y divides r, and a-(y) = 0 otherwise, and this completes the pre
liminary observations. 

3. Limit formula 
All solutions to date of the class number 1 problem depend on an 
analogue for products of L-functions of the classical Kronecker limit 
formula. On writing, with the notation of the previous section, 

A 0 = limA0 (s), Ar = Ar(1) (r =I= 0), 
s-+1 

and taking limits ass-+ 1, we obtain 

L(1,x)L(1,xx') = 7T2 IT (t- \) L x(a) + L :i Are"trbJ<kal. (2) 
6 plk P 1 a 1 r=-oo 

Our purpose here is to prove that 

27T 
JArJ :s:; ..Jd jrj e-"lrlv'd/(ka) 

for r =1= 0, and 
-21T 

A 0 = k..Jd x(a) logp 

if k is the power of a prime p, A 0 = 0 otherwise. 
To begin with, we observe that, for r =1= 0, 

where y runs through all positive divisors of r. It is easily confirmed 
that 

and clearly the sum over yin Ar has absolute value at most k Jrj. The 
first assertion follows at once. To establish the second assertion, we 
note that 

and 
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Further, by well-known estimates for the Gaussian sums, we obtain, 
for any positive integer y and any odd k, 

k k 

L x(f(j, y)) = x(a) L x(j2) e2"i1111k; 
i=l i=l 

we shall be concerned in the sequel only with odd values of k, but the 
equation in fact holds also for even k, as has been shown by Stark.t 
The sum over j on the right can be expressed alternatively as a sum 
of terms dp(kjd) over all common divisors d of k andy,~ and hence we 
see that the sum over yin the above expression for A 0(s) is given by 

x(a) s(2s -1) k2-2s IT (1-p2B-2). 
Plk 

The required result is now readily verified. 

4. Class number 1 
Suppose that Q(.J( -d)) has class number 1. Then, by the theory of 
genera, dis a prime congruent to 3 (mod 4), and there is just one form 
f which can be taken as 

We select k = 21 and we note that Q(.Jk) has class number 1 and 
fundamental unite= !(5+.J21). Further we note that (k,d) = 1 for 
d > k, and that A0 = 0. Hence the double sum on the right of (2) has 
absolute value at most 

ClO 

(47Tj.Jd) L rrt, 
r=l 

where 7J = e-"vdfk. The sum over r is precisely 7J/(1-7J)2, and 7J < ! if 
.Jd > k; thus the above expression is at most 167T7Jf.Jd. 

Now classical results of Dirichlet give 

L(1, x) = 21ogef.Jk, L(1, xx') = h7Tf.J(kd), 

where h denotes the class number of Q(.J(- kd)), and, on substituting 
into (2), we readily derive the inequality 

lhloge-if7T.Jdl < e-"vdfloo, 

assuming that d > 1020, say. But 7T = - 2i log i and so we have on 
the left a linear form A in two logarithms of the kind considered 

t Acta Arith. 14 (1968), 35-50. 
t See Hardy and Wright.'"• An introduction to the theory of numbera (Oxford, 1960), 

Theorem 271. 
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in Theorem 3.1; since clearly h < 4.jd and log e, log i are linearly 
independent, we conclude that the inequality is untenable if dis larger 
than some effectively computable number. To calculate the latter, it 
is convenient to take a second inequality arising from (2) with k = 33, 

namely lh'l , so 'dl -11vdt1oo oge- 3317-y <e , 

where h', e' are defined like h, e above with the new value of k. By 
subtraction we obtain 

lbloge+b'loge'J < e-8B, 

where 8-1 = 14x 103, B = 140.jd, b = 35h, b' = -22h', 

and clearly b, b' have absolute values at most B. Since, furthermore, 
e, e' are multiplicatively independent, one can apply the result quoted 
in§5ofChapter4,withn = 2,d = 4,A = 46, toobtainB< 10250• This 
gives d < 10500, and a determination of the solutions of the above 
inequality below this figure is quite feasible. But the computation is in 
fact not needed here, for it was proved by Heilbronn and Linfoot t in 
1934 that, apart from the nine discriminants listed in Theorem 5.1, 
there could be at most one more, and calculationst had shown that 
the tenth d, if it existed, would exceed exp (107). 

The above argument is similar to that described by Gelfond and 
Linnik in 1949, but they had access to the formulae of § 3 only for 
prime values of k, and in this case A0 is not 0; thus they were led to an 
inequality involving three logarithms of algebraic numbers which 
could not be dealt with effectively at that time. It is a remarkable 
coincidence that both the formulae for composite k and the desired 
effective inequality involving three logarithms became available 
simultaneously in 1966. 

5. Class number 2 
We now indicate briefly how the above arguments can be extended to 
treat the analogous problem for class number 2. § 

If Q(.j( -d)} has class number 2 and d > 15 then dis congruent to 
3 or 4 (mod 8); for if d = 7 (mod 8) there are three inequivalent 
quadratic forms with discriminant -d, namely 

x2 +xy+l(1 +d)y2, 2x2 ±xy+i-(1 +d)y2. 

t Quart. J. Math. Oxford Ser. 5 (1934), 293-301. 
t Trans. Amer. Math. Soc. Ill (1966), 112-19 (H. M. Stark). 
§For the original solutions see Ann. Math. 94 (1971), 139-52 (A. Baker); 153-73 

(H. M. Stark). 
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When d = 4 (mod 8), two inequivalent quadratic forms with dis
criminant-dare given by x2 +idy2, and either 

2x2 + 2xy+l(4+d)y2 or 2x2 +ldy2, 

according as id = 1 or 2 (mod 4), and the method of proof of Theorem 
5.1 is applicable with only simple modifications.t There remains the 
cased= 3 (mod8). Thetheoryofgenerashowsthatthend = pq, where 
p, q are primes congruent to 1 and 3 (mod 4) respectively. On signi
fying by x'(n) one of the generic characters associated with forms of 
discriminant - d and writing 

Xpq(n) = ( -:q), Xp(n) = (~), Xq(n) = ( ~q), X(n) = (~), 
where k = 1 (mod 4) and (k,pq) = 1, we deduce from classical results 
of Dirichlet and Kronecker that 

L(1,x)L(1, XXpq) +L(1, XXP) L(1, XXq) 

=! ~ ~(X( F)+ xx'(F)) (F(x, y))-1, 
F x,y 

where F runs through a pair f,f' of inequivalent quadratic forms with 
discriminant -d and x, y take all integer values, not both 0. We can 
assume thatfis the principal form, whence x'(f) = 1, x'(J') = -1 for 
all x, y. On appealing to Dirichlet's formulae we thus obtain 

(k/211)-J(pq) ~ x(f)/f = h(k) h(- kpq) loge +h(kp) h(- kq) log ?J, 
x,y 

where h(l) denotes the class number of Q(,Jl) and e, 1J denote tho funda
mental units in Q(,Jk), Q(,J(kp)) respectively. Finally taking k = 21 and 
employing arguments similar to those applied in the proof of Theorem 
5.1, we reach the inequality 

ih( -21d)loge+h(21p)h( -21q)log?J- ~t11,Jdl < e<-1/lolva. 

This has the form 

I,Bloga+,B'loga'+,B"loga"l < e-sB, 

where the ,B's denote algebraic numbers with degrees at most 2, and 
a = ?J, a' = e, a" = - 1, B = ,Jd, 8 = f-o. Clearly the heights of the ,B's 
are bounded above by an absolute power of B and the height A of a is 
bounded above by pcvv for some absolute constant c. If q ~ d! then 
we can take f' aR qx2 + qxy + l(p + q) y2, 

t Roo Bull. I.ontl M 11111, Sor, I ( lllfl!l), !lR-1 02. 
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and again the method of proof of Theorem 5.1 is applicable. Thus we 
can assume that q > di whence p < di. We now appeal to the first 
inequality for IAI recorded after the enunciation of Theorem 3.1 and, 
on noting that the maximum A' ofthe heights of a', a" is absolutely 
bounded, we conclude that B < O(logA)1+1: for any ?; > 0, where 
0 = 0(?;) is effectively computable. Hence we have 

~d < O(c~plogp)1+1: 

and, recalling that p < di, this plainly gives an effective upper estimate 
ford when s < !·In practicet the bound ford turns out to be a little 
over 101000, and computational work on the zeros of the ?;-function has 
yielded all din question below this figure; thus it has been checked 
that the largest d for which Q(~( -d)) has class number 2 is 427. 

Progress in this and other fields of application ofthe theory oflinear 
forms in the logarithms of algebraic numbers is continuing, and, before 
leaving the topic, we record five further results that have been obtained 
with its aid. First it has been utilized by E. E. Whitackert to determine 
certain imaginary quadratic fields with the Klein four-group as class 
group. Secondly it has been employed by K. Ramachandra and 
T. N. Shorey§ in researches on a problem of Erdos in prime-number 
theory; in particular, they have shown that if k is a natural number and 
if n1, n2, ••• is the sequence, in ascending order, of all natural numbers 
which have at least one prime factor exceeding k, then the maximum 
j(k) ofni+1 - ni (i = 1, 2, ... ) satisfiesj(k) log kjk-+ 0 ask-+ oo. Thirdly, 
in a similar context, R. Tijdeman° has used an inequality for lA I of the 
kind appearing after Theorem 3.1 to resolve in the affirmative a 
question of Wintner as to whether there exists a sequence of primes 
such that the sequence nv n2, ••• of all natural numbers formed from 
their power products satisfies ni+l-ni-+ oo as i-+ 00. Fourthly, 
A. Schinzel'lf has applied the second inequality for IAJ recorded after 
Theorem 3.1 to settle an old problem concerning primitive prime 
factors of an- pn. And, finally, we mention that in 1967, A. Brumertt 
obtained a natural p-adic analogue of an early version of Theorem 3.1 
which, in combination with work of Ax,U resolved a well-known 
problem of Leopoldt on the non-vanishing of the p-adic regulator of an 
Abelian number field. 

t Ann. Math. 96 (1972), 174-209 (H. M. Stark). 
~ Ph.D. Thesis, University of Maryland, 1972. 
§ Acta Arith. 24 ( 1973), 99-111; 25 ( 1974), 366-73. 
II Oompositio Math. 26 (1973), 319-30. 'If J.M. 269 ( 1974), 27-33. 
tt Mathematih1, 14 (1967), 121-4. U lllinoiH .J. Math. 9 (IH61i), lil-14 !l. 
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ELLIPTIC FUNCTIONS 

1. Introduction 

Siegelt proved in 1932 that if f.J(z) is a Weierstrass go-function such 
that the invariants g2, g3 in the equation 

(f.J'(z))2 = 4(f.J(z))3 -g2 f.J(z) -ga 

are algebraic numbers, then one at least of any fundamental pair 
w, w' of periods of f.J(z) is transcendental; thus both w and w' are 
transcendental if f.J(z) admits complex multiplication. Siegel's work 
was much improved by Schneider: in 1937; Schneider showed that if 
g2, g3 are algebraic then any period of go(z) is transcendental, and 
moreover the quotient wfw' is transcendental except in the case of 
complex multiplication. From the latter result it follows at once that 
the elliptic modular functionj(z) is transcendental for any algebraic z 
other than an imaginary quadratic irrational. Schneider's work led, in 
fact, to a wide variety of theorems on the transcendence of values of 
the Weierstrass functions, and, in 1941, he further obtained far
reaching generalizations concerning Abelian functions and integrals.§ 

Most of Schneider's results in this context can be derived as parti
cular cases of a general theorem on meromorphic functions which he 
proved in 1949. 11 The theorem has recently been re-formulated by 
Lang.,y 

Theorem 6.1. Let K be an algebraic number field and let f 1 ( z), ... ,f n (z) 
be meromorphic functions of finite order. Suppose that the ring K[fv ... ,f nJ 
is mapped into itself by differentiation and has transcendence degree at 
least 2 over K. Then there are only finitely many numbers z at which 
f 1, .. . ,fn simultaneously assume values inK. 

A meromorphic function f(z) is said to have finite order if there 
exists p > 0 and a representation off as a quotient gfh of entire func
tions such that, for any R ~ 2, and for all z with lzl ~ R, one has 

max (ig(z)l, lh(z)l) < exp (RP). (1) 

t J.M. 167 (1932), 62-9. t M.A. 113 (1937), 1-13. 
§ J.M. 183 (1941), 110-2!1. II M.A. 121 (1949), 131-40. 
~ See Bibliography (flrHt work). 

5 (ISIS] BTN 
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The ring K[fv ... ,fn] consists of all polynomials in f 1, ••. ,fn with 
coefficients in K, and the transcendence degree is the maximum 
number of elements in an algebraically independent subset. Theorem 
6.1 has been generalized to relate to meromorphic functions of several 
variables but the assertion has been obtained only for point sets which 
can be represented essentially as a cartesian product and this limits 
considerably the range of application.t Functions of several variables 
have been utilized, however, as in Chapters 2 and 3, in other work on 
elliptic functions, and this will be the theme of § 5. 

2. Corollaries 
We now record some corollaries to Theorem 6.1 ; others can be found 
in the works cited in the Bibliography. 

Theorem 6.2. If g2, g3 are alge'braic, then for any algebraic a 9= 0, 
,fJ(a) is transcendental. 

For the proof one has merely to observe that if ,f.)( a) were algebraic 
then, for infinitely many integral values of z, the functions 

f 1(z) = ,fJ(az), f 2(z) = ,f.J'(az), f 3(z) = z 

would simultaneously assume values in the algebraic number field 
generated by g2, g3, a, ,fJ(a) and ,fJ'(a) over the rationals, contrary to 
Theorem 6.1. 

Theorem 6.3. For any algebraic a with positive imaginary part, 
other than a quadratic irrational, j(a) is transcendental. 

For suppose thatj(a) is algebraic. Then there is a ,f.)-function with 
algebraic invariants g2, g3 and fundamental periods w1, w2 such that 
a= w2fw1 ; indeed if f.)(z) is the ,f.)-function with periods 1, a and if 
g2, g3 are the invariants of f.) then the required ,f.)-function has periods 
gi, agJ if g3 9= 0 and gf, a?Jt if g2 9= o. Now the functions f 1 = ,fJ(z), 
f 2 = ,fJ(az), f 3 = ,f.J'(z), f 4 = ,fJ'(az) simultaneously assume values in an 
algebraic number field, say K, when z = (r +!) w1 (r = 1, 2, ... ) and so, 
by Theorem 6.1, K[f1,f2,f3,f4 ] has transcendence degree at most 1. This 
implies that f 1,f2 are algebraically dependent, whence lw2 is a period 
of gJ(az) for some positive integer l. Thus law2 = mw1 +nw2 for some 
integers m, n and so a is a quadratic irrational. It will be recalled that 

t For some work aimed towards overcoming this difficulty see papers by Bombieri 
(Invent. Math. 10 (1970), 267-87) and Bombil'ri and Lang (ibid. II (1970), 1-14). 
It is shown that it suffiooa if tho points in quoRt.ion clo not lie on an algebraic 
hypersurfaoo. 
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if 1, a is a basis for an imaginary quadratic field K, thenj(a) is in fact 
a real algebraic integer with degree given by the class number of 
K, and hence the hypothesis of Theorem 6.3 is certainly necessary. 

Theorem 6.4. Any vector period of an Abelian function arising from 
an algebraic curvet by the inver.sion of Abelian integrals is transcendental. 

The result follows from Theorem 6.1 withf1(z), ... ,fn_1(z) given by 
the Abelian function, say A(z1, ••• ,zp), and its p partial derivatives 
with respect to z1, ... , zP, evaluated at z1 = w1z, ... , zP = wPz, where 
(w1, ••. , wp) denotes the given period, together withfn(z) = z. It should 
perhaps be emphasized that the theorem establishes only the tran
scendence of one at least of the elements of the period vector, and it 
remains an open problem to prove the transcendence of each such 
element. As a particular application of Theorem 6.4 one sees that the 

P-function f• r(a) r(b) 
{J(a,b) = xz-1(1-x)b-ldx = -='":--'---::--' 

0 r(a+b) 

is transcendental for all rational, non-integral a, b. For if a+ b is not an 
integer then the elements of any vector period of the Abelian function 
arising from the integration of xa-1(1- x)b-l are given by products of 
fJ(a,b) with numbers in the field generated by e2"ia and e2"ib over the 
rationals; and the case when a+b is an integer reduces to the tran
scendence of rr. This result on fJ(a, b) represents all that is known 
concerning the transcendence ofthe values of the r-function. 

Finally, let w be a primitive period of a ,f.)-function with algebraic 
invariants g2, g3 and let 71 = 2s"(!w) be the associated quasi-period of the 
Weierstrass s-function satisfying s'(z) = - ,fJ(z). We have 

Theorem 6.5. Any linear combination of w, 7J with algebraic 
coefficients, not both 0, is transcendental. 

For the proof we observe simply that if aw + fJ7J were algebraic, 
where a, fJ are algebraic numbers, not both 0, then the functions 

/ 1 = ,fJ(z), / 2 = ,f.J'(z), / 3 = az + fJs(z) 

would simultaneously assume values in an algebraic number field when 
z = (r + !) w (r = 1, 2, ... ), contrary to Theorem 6.1. On recalling that 
w and 71 can be represented as elliptic integrals of the first and second 
kinds respectively, one deduces easily from Theorem 6.5 that the 
circumference of any ellipse with algebraic axes-lengths is transcen
dental. Further work in thiR context will he diRcussed in § 5. 

t The curve i11 dofinml ovor tht• algllbrnio numbnrs. 

S·2 
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3. Linear equations 

We establish here a result on linear equations with algebraic coefficients 
which generalizes Lemma 1 of Chapter 2. K will signify an algebraic 
number field and c1, c2, c3 will denote positive numbers that depend on 
K only. Further, as in Chapter 4, 11011 will signify the size of 0, that is, 
the maximum of the absolute values of the conjugates of 0. 

Lemma 1. Let M, N be integers with N > M > 0 and let 

ui;(1 ~ i ~ },f, 1 ~ j ~ N) 

be algebraic integers in K with sizes at most U ( ~ 1 ). Then there exist 
algebraic integers x1, ... , xN inK, not all 0, satisfying 

and 

N 

~ ui1x1 = 0 (1 ~ i ~ M) 
i=l 

For the proof we denote by w1, .•. , wn an integral basis for K and we 
observe that n 

uiiwk = ~ uhiikwh 
h=l 

for some rational integers uhiik· The equations serve to express the 
latter as linear combinations of the ui1 and their conjugates, with 
coefficients that depend only on K, and hence we have luhiikl < c2 U. 
It follows from Lemma 1 of Chapter 2 that there exist rational 
integers x1k, not all 0, with absolute values at most (c3NU)MI<N-M>, 
satisfying 

N n 
~ ~ uhiikxik = 0 ( 1 ~ h ~ n, 1 ~ i ~ M), 

i=lk=l 

and it is now clear that the numbers 
n 

x1 = ~ x1kwk ( 1 ~ j ~ N) 
k=l 

have the required properties. 

4. The auxiliary function 

We assume now that the hypotheses of Theorem 6.1 are satisfied and 
we write f, = g,/h,, where g,, k, are entire functions for which ( 1) holds. 
We suppose further that there exists a sequence of distinct complex 
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numbers y1, y2, ••• such that fi(y1) is an element of K for all i, j. By 
c,, c6, ••• we shall denote positive numbers which depend only on the 
quantities so far defined. We signify by m an integer that exceeds a 
sufficiently large c,, and by k an integer that is sufficiently large com
pared with m. We write, for brevity, L = [Tcf], and we usefi>to denote 
the jth derivative of f. 

Lemma 2. There are algebraic integers p(i\1, i\2) inK, not all 0, with 
sizes at most kc6k, such that the function 

satisfies <Jl<i>(y1) = 0 (0 ~j ~ k, 1 ~ l ~ m). 

Proof. The number <Jl<i>(y1) is plainly expressible as a linear form in 
the p(i\1, i\2) with coefficients given by polynomials in / 1(y1), ••• ,fn(y1). 

The polynomials arise from the derivatives of !1> ... Jn which, by 
hypothesis, are elements of K[/1, ... ,fn]; thus the coefficients of 
p(i\1, i\2) belong to K. The latter become algebraic integers when 
multiplied by some positive integer, and we shall suppose that the 
sizes of these algebraic integers are at most U. The number of equations 
to be satisfied isM= m(k+ 1) and the numberofunknownsp(i\1, i\2) is 
N = (L + 1)2 > kl-. But clearly N > 2M fork sufficiently large and so, 
by Lemma 1, the equations can be solved non-trivially, and indeed 
with the sizes of the p(i\1, i\2) at most qNU. Hence it remains only to 
prove that one can take U ~ k;Ce k. 

Now it is readily verified by induction onj that, for any polynomial 
cl cl 

Q(x1, · · · • xn) = ~ · · · ~ q(l1, .. · ,ln) xi1 
.. • xl: 

I1=0 ln=O 

with coefficients inK, the function R(z) = Q(/10 ... ,fn) satisfies 
cl' cl' 

R<i>(z) = ~ ... ~ r(l1, ... ,ln)fi1 
... ff:, 

1,=0 1,.=0 

wherether(l1, ... ,ln) are again elements of K andd' ~ d+j8, 8denoting 
the maximum of the degrees of the first derivatives of / 1, ... ,fn, 
expressed as polynomials in the latter. Further, it is easily confirmed 
that if the q(l1, ••• , ln) become algebraic integers with sizes at most s 
after multiplying Q by some positive integer, then 1{-i> can be multi
plied by a positive integer so that the r(l1, ••• , ln) become algebraic 
integers with sizes at most S = (c1d)ijls. The lemma follows on 



60 ELLIPTIC FUNCTIONS 

applyingthisresultwithQ = xi1 x~2 andj ~ k,whences = 1,d ~ L ~ k 
and S ~ J&sk, and noting that, if k is sufficiently large, then the 
estimate J&•k obtains for each power product Jf1 ••• f!,n evaluated at 
z = y1, where li ~ d' ~ c10 k and l ~ m. 

Lemma 3. For any R ~ 2 and for all z with \z\ ~ R, the function 
¢ = (h1 ... hn)L <I> satisfies 

\¢(z)\ < exp{c11(klog k+LRP)}. 

Further, for any j, l with j ~ k, l ~ m such that <J><il(y1) = 0 for all i < j, 
the number ¢J<il (y1) either vanishes or has absolute value at least j-c12 J. 

Proof. The first part is an immediate deduction from (1) together 
with the estimates occurring in Lemma 2. The second part is obtained 
by an argument similar to that employed in the proof of Lemma 3 of 
Chapter 2; one observes that <I><il(y1) is an element of K and that, for 
j ~ k, it becomes an algebraic integer with size at most jCtai when 
multiplied by some positive integer likewise bounded. Further, by 
hypothesis, <J><il(y1) differs from ¢<il(y1) only by a factor (h1 ... hn)L 
evaluated at z = y1, and the required result now follows from the fact 
that the norm of a non-zero algebraic integer is at least 1. 

5. Proof of main theorem 

It suffices to prove that <I> vanishes identically; for this implies that f 1 

and f 2 are algebraically dependent and so, since the suffixes can be 
chosen arbitrarily, K[f1, ... Jn] has transcendence degree at most 1, 
contrary to hypothesis. The contradiction shows that m is bounded 
by some c4 as above, whence the sequence Yv y2, ••• must terminate. 

The proof will proceed by induction on j; we assume that 

<t><il(y1) = 0 (0 ~ i <j, 1 ~ l ~ m), 

and we prove that the same then holds fori= j. In view of Lemma 2 
we can suppose thatj > k. Let now C be the circle in the complex plane 
described in the positive sense with centre the origin and radius 
R = jlf<4pl. l!'urther, let 

F(z) = (z-y1) ... (z-ym), 

and let l be any integer with 1 ~ l ~ m. By Cauchy's residue theorem 
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Clearly for z on 0 we have 

IF(z)l > (!R)m > r/(8p), 
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and also lz-y11 > !R. Further, we have LRP ~ k!j-l ~ j and so, by 
Lemma 3, l¢(z)! ~ jC-t4i. Furthermore, it is obvious that IF'(y1)! < j 
for k sufficiently large. Hence we obtain 

1 ¢<i>(y1) J ~ j016i-iml(8p). 

But if m > 8p(c12 + c15) then, in view of Lemma 3, the latter estimate 
implies that ¢U>(y1) = 0. Assuming, as plainly one may, that h1 ••. hn 
does not vanish at z = y1, it follows that <I>(J)(y1) = 0. Thus, by 
induction, we conclude that <I> and all its derivatives vanish at 
y1, ••• , Ym whence <I> vanishes identically, as required. 

6. Periods and quasi-periods 

The work of Siegel, cited at the beginning, was based on the interpola
tion techniques discovered a few years previously by Gelfond, t and the 
work of Schneider arose out of further developments of these tech
niques leading, as mentioned in Chapter 2, to a solution of the seventh 
problem of Hilbert. The recent advances concerning linear forms in the 
logarithms of algebraic numbers discussed in earlier chapters have 
similarly given rise to new results on the transcendental theory of 
elliptic functions, as we shall now describe. 

First, generalizing Theorem 6.5, it has been shown that if w1, w2 are 
primitive periods of some, possibly distinct f.J-functions both with 
algebraic invariants, and if 1J1, 1J2 are the associated quasi-periods of 
the '-functions, we havet 

Theorem 6.6. Any non-vanishing linear combination of Wv w2, 1J1, 772 

with algebraic coefficients is transcendental. 

This establishes, in particular, the transcendence of the sum of the 
circumferences of two ellipses with algebraic axes-lengths. For the 
proof of Theorem 6.6 we signify by f.Jv f.J 2 the given (.)-functions, by 
, 1, ' 2 the associated '-functions and we assume, as we may without 
loss of generality, that the corresponding invariants !-g2, !-g3 are alge
braic integers. We assume also that there exists a linear relation 

<X1 W1 + <X2ltJ2 + fJ1 '1/1 + fJ2'1J2 = <Xo, 

t Hun o.g. T81wku Math .• J. 30 ( 1929), 280-li. 
f amtit'flt'n Nacllrichtm (11169), No. 16, 14/i ·57. 
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where a 0 =I= 0, a 1, a 2, /31, /32 are algebraic numbers, and we ultimately 
derive a contradiction. We signify by k an integer which exceeds a 
sufficiently large number c depending only on the a's, fl's and the 
invariants, periods and quasi-periods of the Weierstrass functions, 
and we write, for brevity, h = [kl•], L = [ki]. The argument then 
rests on the construction of an auxiliary function 

L L L 

<l>(zv Z2) = ~ ~ ~ p(i\o, Av i\.2) (f(zv Z2)).1.o (,fJ1 (wlzl)).\1 (,f.J2(w2z2));\ 
.1.,=0 .1.,=0 .1.,=0 

where the p(i\0 , i\1, i\.2) are integers, not all 0, with absolute values at 
most k10k, and 

f(zl, Z2) = al W1 Z1 + a2W2Z2 + fJ1 S1(w1 zl) + fJ2 S2(w2z2). 

The function is constructed to satisfy 

<l>m1,m2( 8+f,8+f) = 0 

for all integers 8 with 1 ~ 8 ~hand all non-negative integers m1, m 2 
with m1 + m 2 ~ k, where the suffixes denote partial derivatives as in 
Chapter 2. 

The essence of the proof is an extrapolation algorithm analogous to 
that described in connexion with linear forms in logarithms, but the 
order of <I> here is greater than in the earlier work and, to compensate, 
rational extrapolation points with large denominators are utilized; 
an important role in the discussion is therefore played by the division 
value properties ofthe elliptic functions. The counterpart of Lemma 4 
of Chapter 2 asserts that, for any integer J between 0 and 50 inclusive, 
we have 

for all integers q, r, 8 with q even, (r, q) = 1, 

1 ~ q ~ 2hlJ, 1 ~ 8 ~ h!J+l, 1 ~ r < q, 

and all non -negative integers m1, m2 with m1 + m 2 ~ kj2J. The demon
stration proceeds by induction and involves an application of the 
maximum-modulus principle as in the original lemma. It also utilizes 
the observation that, apart from a factor wr1 wr•, the number on the 
left of the required equation is algebraic with degree atmostc'q4, where 
c' is defined like c above; and precise estimates for the number and its 
conjugates are furnished by division value theory. One concludes 
from the lemma that 
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which is clearly a system of (L+ 1)3 linear equations in the same 
number of variables p(.A0,.A1,.A2); on noting that, for any regular 
functionf, the determinant or order n with the ith derivative of (f(z)) i 
in the ith row andjth column has value 

2! ... n! (f'(z))tn<n+ll, 

one easily verifies that the system of equations is untenable, and this 
proves Theorem 6.6. 

The special case of the theorem when f.Jv g;J2 are the same g;J-function, 
say f.J, is of particular interest. For then Wv w2 can be taken as a pair 
of fundamental periods of fp and we have the Legendre relation 

1hW2-1J2W1 = 21Ti. 

In this case Coatest and more recently Massert have much extended 
the arguments and have proved: 

Theorem 6.7. The space spanned by 1, w1, w2, 1]1, 1} 2 and 27Ti over the 
algebraic numbers has dimension either 4 or 6 according as f.J does or does 
not admit complex multiplication. 

The theorem clearly exhibits a non-trivial example of five numbers 
that are algebraically dependent but linearly independent over the 
algebraic numbers. Moreover it implies that, when fp admits complex 
multiplication, the numbers in question satisfy an algebraic linear 
relation other than that between the periods; this was discovered by 
Masser. It takes the form 

a1J2- CT1J1 = yw2, 

where y is algebraic and a, care the integers occurring in the equation 

a+br+cr2 = 0 

satisfied by T = w1fw 2• A necessary and sufficient condition for y to be 
0 is that either g2 or g3 be 0, and thus one deduces that 1J 1/1J 2 is tran
scendental if and only if neither invariant vanishes. The theorem also 
shows, for instance, that 1T + w and 1T + 1J are transcendental for any 
period w of fp(z) and quasi-period 1J of {;'(z). The transcendence of 1rjw, 
incidentally, follows from Theorem 6.1 by way of the functions 
f.J(wzj1T) and e2iz. 

The demonstration of Theorem 6.6 extends easily to establish, under 
the conditions appertaining to Theorem 6. 7, the transcendence of any 

t Amer. J. Math. 93 (1971), 386-97; lnventionea Math. II (1970), 167-82. 
t Ph.D. ThoMill, Cambridge, 1974. 
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non-vanishing linear combination of w1, w2, 'f/1, 'f/2 and 27Ti; the auxiliary 
function now takes the form 

L L 

<l>(z1, z2, z3 ) = ~ .. . ~ p(.-\0 , ... , .-\3) 
A,=O "-a=O 

x (f(zv z2, z3 })"-o (,fJ1(w1 z1))"' (,fJ2((LI2z2))"-ae2"i"-aza, 

where L = [kt] andf(z1, z2, z3} is the sum ofj(z1, z2), as defined above, 
and an algebraic multiple of 1rz3 • Here, however, it is necessary to 
appeal to another remarkable property of the division values, namely 
that, for any positive integer n, the field obtained by adjoining 
,fJ(w1/n}, ,fJ(w2/n), tJ'(w1fn) and tJ'(w2fn) to K = Q(g2, g3, e2"iln) has 
degree at most 2n3 over K; this ensures that the estimate c' q' referred 
to above remains unaltered in the present context. To complete the 
proof of Theorem 6. 7 one has to establish the linear independence 
over the algebraic numbers of w1, 'f/1 and 27Ti in the case when .fJ admits 
complex multiplication, and of these, together with w2, 'f/2, in the case 
when tJ does not. The work runs on similar lines, using slightly modified 
auxiliary functions, but the determinant arguments at the end are no 
longer applicable; ad hoc techniques have been introduced to overcome 
this difficulty involving, in particular, new considerations on the 
density of zeros ofmeromorphic functions. The linear independence of 
w1, w2 and 27Ti was in fact proved first by Coates utilizing a deep result 
of Serre, but Masser later verified this more elementarily. 

In another direction, the work has been refined to yield estimates 
from below for linear forms in periods and quasi-periods. They show, 
for instance, that for any ,fJ-function with algebraic invariants, for 
any e > 0, and for any positive integer n, 

ltJ(n)l < On<loglogn)H<, 

where 0 depends only on g2, g3 and e.t In fact a similar result has been 
established for ,fJ(1T + n) and for ,fJ(<X), where <X is any non-zero algebraic 
number. Theestimatecompareswellwiththelowerbound ltJ(n)l >On 
valid for some 0 > 0 and infinitely many n. 

Finally, as a further example of the type of theorem that has been 
obtained by the above methods, we mention a recent result of Massert 
concerning algebraic points on elliptic curves; he has proved, namely, 
that if ,fJ(z) has algebraic invariants and admits complex multiplica
tion, then any numbers u 1, ... , un for which ,fJ(ui) is algebraic are 

t Amer. J. Math. 92 (1970), 619-22 (A. Baker); P.O.P.S. 73 (1973), 339-50 (D. W. 
Ma.ssor). t Ph.D. Th011iM, Cambridge, 1974. 
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either linearly dependent over Q(w1fw 2) or linearly independent over 
the field of all algebraic numbers. It would be of much interest to 
establish a theorem of the latter kind more generally for all &O-f unctions 
with algebraic invariants, and it would likewise be of interest to 
extend Theorem 6.6 to apply to any number of go-functions; both 
problems, however, seem out of reach at present. 



7 

RATIONAL APPROXIMATIONS TO 
ALGEBRAIC NUMBERS 

1. Introduction 
In 1909, a remarkable improvement on Liouville's theorem was 
obtained by the Norwegian mathematician Axel Thue.t He proved 
that for any algebraic number ~ with degree n > 1 and for any 
K > ln+ 1 there exists c = c(~, K) > 0 such that 1~-pfql > cjqK for 
all rationals pjq (q > 0). His work rested on the construction of an 
auxiliary polynomial in two variables possessing zeros to a high order, 
and it can be regarded as the source of many of our modern transcen
dence techniques. The condition on K was relax~d by Siegelt in 1921 
to K > s+nf(s+ 1) for any positive integers, thus, in particular, to 
K > 2.jn, and it was further relaxed by Dyson§ and Gelfond 11 inde
pendently in 1947 to K > .j(2n). The latter expositions continued to 
involve polynomials in two variables and further progress seemed to 
require some extension of the arguments relating to polynomials in 
many variables; in fact special results in this connexion had already 
been obtained by Schneider~ in 1936. A generalization of the desired 
kind was discovered by Rothtt in 1955; he showed indeed that the 
above proposition holds for any K > 2, a condition which, in view of 
the introductory remarks of Chapter 1, is essentially best possible. 

Roth's work, however, gave rise to a number of further problems. 
Siegel had initiated studies on the approximation of algebraic numbers 
by algebraic numbers in a fixed field, and also by algebraic numbers 
with bounded degree, and although Roth's arguments could be readily 
generalized to furnish a best possible result in connexion with the first 
topic, U they did not seem to admit a similar extension in connexion 
with the second. Even less, therefore, did they appear capable of 
dealing with the wider question concerning the simultaneous approxi
mation of algebraic numbers by rationals. The whole subject was 
resolved by Schmidt§§ in 1970; building upon Roth's foundations but 

t J.M. 135 (1909), 284-305. 
§ Acta Math. 79 (1947), 225-40. 
'If J. M. 175 (1936), 182-92. 

U Ree LeVeque (Bibliography). 
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t M.Z. 10 ( 1921), 173-213. 
II Bibliography. 

tt MathemtJtika, l (1955), 1-20. 
§§ Bibliography. 
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introducing several new ideas, in particular from the Geometry of 
Numbers, he proved: 

Theorem 7.1. For any algebraic numbers a 1, ... ,an with 1, a 1 , ... , an 
linearly independent over the rationals, and for any e > 0, there are only 
finitely many positive integers q such that 

ql+ellqalll .. ·llqanll < 1. 

Here llxll denotes the distance of x from the nearest integer taken 
positively. The theorem implies, by a classical transference principle, 1 

that there are only finitely many non-zero integers q1, ... ,qn with 

jql ... qnjl+ejjqlal+ ... +qnanll < 1. 

Further, as immediate corollaries, we see that there are only finitely 
many integers p 1, ... ,pn, q (q > 0) satisfying 

jai-Pifqi < q-Hl/n)-e (1 :;;;.j :;;;_ n), 

and also only finitely many integers p, q1, ... , qn satisfying 

jqlal + ... +qnan -pi < q-n-e, 

where q =max lq11. Furthermore we have: 

Theorem 7.2. For any algebraic number a with degree exceeding n 
and any e > 0, there are only finitely many algebraic numbers fJ with 
degree at most n such that lex-PI < B-n-l-e, whe1'e B denotes the height 
of p. 

The theorem follows from the inequality just above with a1 = ,xi, on 
noting that, if P(x) is the minimal polynomial for p, then 

!P(a)i <BOla-Pi 
for some 0 depending only on a. The exponent of B is essentially best 
possible, as has been demonstrated by Wirsing.~ In fact, Wirsing 
obtained Theorem 7.2 in 1965 before the work of Schmidt, but with 
the less precise exponent - 2n- e.§ 

One of the main applications of the methods of this chapter has 
concerned Diophantine equations of norm form in several variables, 
which generalize the Thue equation discussed in Chapter 4; indeed the 

t See C.-la' Diophantine appro:nmation (Bibliography). 
~ J. M. 206 (1961), 67-77. 
§ Proo.l'Jympoft4 Pun Math. (Amfr. Math. Soc.), 20 (1971), 213-47. 
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work has led to a complete description of all such equations that 
possess only finitely many solutions. t 

Theorem 7.3. Let K be an algebraic number field and let M be a 
rrwdule in K. A necessary and sufficient condition for there to exist an 
integer m such that the equation N fl = m has infinitely many solutions fl 
in M is that M be a full module in some sub field of K which is neither the 
rational nor an imaginary quadratic field. 

The necessity follows at once from the fact that the subfield, if it 
exists, contains at least one fundamental unit, and the sufficiency is a 
consequence of a generalized version of Theorem 7.1 relating to 
products of linear forms;~ it is in fact a direct corollary in the case 
when the dimension of M is small compared with the degree of K. As 
examples, one sees that the equation 

N(x1 +x2-J2+x3 ,J3) = 1 

has infinitely many solutions in integers x1, x2, x3 given by 

x1 +x2,J2 = ±(1+-J2)n, and by x1 +x3 ,J3 = ±(2+,J3}n, 

where n = 0, 1, 2, ... ; and the equation 

N(xi +ql1Px2+ ... +q<P-2)/Pxp-l) = m, 

where p, q are primes and m is any integer, has only a finite number of 
solutions in integers x1, ... , xP_1 ; for clearly the field generated by 
q11P over the rationals has only trivial subfields. It should be noted, 
however, that, in contrast to the work of Chapter 4, the arguments 
here are not effective and cannot lead to a determination of the 
totality of solutions. In fact, apart from a few special results of 
Skolem, § the only effective theorems established to date on equations 
of norm form in three or more variables derive from the work on the 
hypergeometric function referred to in § 5 of Chapter 4. 11 

A generalization of Roth's theorem in the p-adic domain was 
obtained by Ridout~ in 1957; in particular he proved that for any 
algebraic number a and any e > 0, there exist only finitely many 
integers p, q, comprised solely of powers of fixed sets of primes, such 
that ia-pfql < q-e. In this case, however, Theorem 3.1 gives rather 
more; in fact, on taking a 1 =a and the remaining a's as the given 

t M.A. 191 (1971), 1-20. 
t For an account of this and e.ssociatecl topics one may l"efer to the excellent survey 

of Schmidt; Enaeignement Math. 17 (1971), 187-253. 
§ Bibliography. II P.C.P.S. 63 ( 1967), 693-702. 
~ Matlwmatika, 4 ( 191i7), 125-·31 ; 5 (195M), 40-8; 1100 also Mahler (Bibliography). 
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primes, one sees at once that q-e can be replaced by (log q)--{! for some c 
depending only on a and the primes, a result moreover that is fully 
effective. Further theorems in the context of p-adic approximations 
follow from the other inequalities for !AI recorded in Chapter 3. 

2. Wronskians 
The Wronskian of polynomials ¢1(x}, ... , ¢k(x) of one variable is defined 
as the determinant of order k with (j!)-1 ¢~i>(x} in the ith row and 
(j + 1 )th column, where 1 :::; i :::; k, 0 ~ j < k, and ¢<1> denotes the jth 
derivative of¢. Such Wronskians occurred in the original work of 
Thue, and they sufficed for the expositions of Siegel, Dyson and 
Gelfond; the arguments of Roth and Schmidt, however, involved the 
concept of a generalized Wronskian. Suppose that ¢ 1, ... , ¢k are 
polynomials in n variables x1, ••• , xn and let f:j,W denote a differential 
operator of the form 

(j1 ! ... jn !)-1 (ojox1)it ... (ojoxn)in, 

where j 1 + ... +jn = j. Then any determinant of order k with some 
l:l.W¢-t in the ith row and (j + 1)th column is called a generalized 
Wronskian of ¢ 1, ••• , ¢k· There are clearly only finitely many 
generalized Wronskians of ¢ 1, ... , ¢k, and when n = 1 the set reduces 
to the original Wronskian. We shall require later the result that if 
¢ 1, ••• , ¢k are linearly independent over their field of coefficients then 
some generalized Wronskian does not vanish identically; proofs are 
given, for instance, in the tracts of Cassels and Mahler. 

3. The index 
The proof of Theorem 7.1 involves polynomials P in kn variables 
Xzm (1 ~ l :::; k, 1 ~ m ~ n}, homogeneous in xlm, ... , xkm for each m. 
Suppose that P has real coefficients and let Lm (1 ~ m ~ n) be real 
linear forms in x1m, ••• , xkm. Then the index of P with respect to 
L1, ••• , Ln and positive integersr1, ••• , r nis defined as the largest value of 

(j1/r1) + · · · + (jnfr n) 

taken over all setsjv ... ,j,. such that the rational function 

Pj(L{1 ... L~") 

is in fu.ct a polynomial. It is OltHily verified that., for any polynomials 
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P, Q as above, the index, for brevity, ind, with respect to the Lm and 
r m satisfies ind (P + Q) ~ min (indP, ind Q), 

indPQ = indP+indQ. 

We shall require also the related concept of the index of a real 
polynomial P(x1, ••• , xn) with respect to rationals Pmfqm (qm > 0) and 
integers r m > 0 ( 1 :::; m :::; n); this is defined as the index of the 
polynomial a dn · 

X2l· · · X2nP(xufx21• · · ·' X1n/X2n) 

in the 2n variables x1m (l = 1, 2) with respect to the linear forms 

and the r m• where dm denotes the degree of P in xm. The index in the 
latter sense occurred first in the work of Roth, and the generalized 
concept was introduced by Schmidt. 

In analogy with the notation of earlier chapters, we define the 
height IIPII of a polynomial Pas the maximum of the absolute values 
of its coefficients; we shall speak of the height only for polynomials with 
rational integer coefficients, not identically 0. The same definition will 
of course apply in the special case of linear forms. 

Suppose now that P is a polynomial in kn variables as indicated at 
the beginning of the section. Let L1, ... ,Ln be linear forms as there, 
with relatively prime integer coefficients, and let qm = IILmll· Further 
let rl, ... , rn be positive integers such that orm > rm+l (1 :::; m < n), 
where o = (ef32) 2n and 0 < e < 1. We have 

Lemma 1. lfq~ > qr' (1:::; m:::; n)andqf11 > snk\ where 0 < 'iJ:::; k, 
and if also P has height at most qfnr,lka and degree at most r m in 
x1w ... , xkm• then the index of P with respect to the Lm and r m is at most e. 

This is an extension, due to Schmidt, of the most fundamental 
part of Roth's work, sometimes called Roth's lemma. The result 
follows easily in fact from the case considered by Roth, as we now 
show. 

We assume, as we may without loss of generality, that qm = la1ml• 
where k 

Lm = ~ azmxzm (1:::; m:::; n). 
l=l 

We shall further assume that (a1m,a2m)t is at most q<j;- 2>1<k-l>; this 
also involves no loss of generality, since a prime p can divide at most 

t (a, b) denotes tho greatest common divisor of a, b. 
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k- 2 of the integers (a1m, a1m) with 1 < l :::; k, whence their product 
divides q:;.- 2• Let now P' be the polynomial obtained from P by 
successively removing, in some order, the highest power of 

x1m ( 1 =::; l =::; k, 3 =::; m =::; n) 

that divides P and then setting the variable to 0; further let P" be the 
polynomial obtained by setting x12 = 1 in P' for each l. Then clearly 
the index of P with respect to the Lm and r m is at most the index of P" 
with respect to - a2mf a~m and r m· Also, by assumption, the denominator 
of a2mfa1m, when expressed in lowest terms, namely qmf(a1m, a2m), is at 
least q-:J.k. Hence we see that it suffices to prove the following modified 
version of Lemma 1. 

For any integers r m ( 1 :::; m :::; n) as above and any rationals 

Pmfqm (qm > 0} 

in their lowest terms such that q~ > qr1 and q~17 > sn, where 0 < 'iJ :::; 1, 
the index with respect to the Pmfqm and r m of any polynomial P(x1, ••• , xn) 
with height at most q~11r1 and degree at most r m in xm is at most e. 

Proofs of this proposition, possibly in slightly adapted form, in 
particular with 'iJ = 1, are given in several of the texts cited in the 
Bibliography, and our exposition can therefore be relatively brief. The 
result plainly holds for n = 1, forifj1 is the exponent to which x1 - p 1 fq1 

divides P(x1} then, by Gauss' lemma, we have 

P(xl) = (qlxl-Pl)i1 Q(x1), 

where Q is a polynomial with integer coefficients; thus the leading 
coefficient of Pis at least q{1

, whencej1/r1 < ~'i} < e, as required. We 
now assume the validity of the proposition with n replaced by n - 1 

and we proceed to establish the assertion for n (? 2). 
We begin by writing P in the form 

r/Jo lJr 0 + .. · + r/Js-1 lJr s-l• 

where the rp's and ljr's are polynomials in the variables x1, ... , xn_1 and 
xn respectively with rational coefficients, and we choose one such 
representation for which 8 (:::; r n + 1) is minimal. Then there exist 
Wronskians U', V' of the rp's and ljr's respectively which do not vanish 
identically, and clearly W = U' V' can be expressed as a determinant 
of order 8 with 

in tho (i + 1 )throw nnd (j + 1 )t.h oolumn, whore tho !J.W 11re operators 
6 lt'l N 
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as in § 2 with jn = 0. Hence W is a polynomial with degree at most 

sr1 in x1 and with II WI!:.; (srni!P!i)s ~ q~87Jrs, 

where r = r1 =max r111 ; here we are using the hypothesis qf11 > sn and 
the observations that !J,.<i> acting on any monomial in P introduces 
a factor not exceeding ~n, that there are at most 2rn such monomials, 
and that the number of terms obtained on expanding the determinant, 
for W iss!~ ~8• Now, again by Gauss' lemma, we have W = UV, 
where U, V are polynomials with integer coefficients in the variables 
x1, ••• , xn-l and Xn respectively, given by some rational multiples of 
U', V'; and clearly the bound for II Wll obtains also for II Ull and II VII· 
Thus, by our inductive hypothesis, it follows, on taking 2~ in place of~. 
that the index of U with respect to the Pmfqm and r m is at most 
2-5+1/ll'l-1se2• Further, by the case n = 1 of the proposition together 
with the hypothesis ifri' ~ qt1, the same bound a ppliesfor the index of V. 
We conclude therefore that the index of W is at most lse2. 

On the other hand, the index of the general element in the deter
minant for W is at least n-1 

r/J-t- ~ jmfrw 
m=1 

where rp,l = ()- ifr n• ()denotes the index of P, and 

j1 + ... +jn-1 = j ~ s-1 ~ r n; 

further, by hypothesis, we have ~rm > rm+l and so the above sum is at 
most 8. Hence the index of W is at least 

s-1 s-1 
~max (rpi-8, 0) ~ ~max (r/Ji, 0) -s~. 

i=O i=O 

But if ()r n < s- 1 then the last sum is 

([()rn] + 1) ({}- [()rn]f(2rn)) ~ !()2s, 

andif()rn ~ s-1 then it is 

es-!s(s-1)frn ~ !()s. 

On comparing estimates, we obtain 

max(!{}, !()2) ~lea +8 ~ !e2, 

whence () ~ e, as required. 
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4. A combinatorial lemma 
We prove now a lemma of a combinatorial nature relating to the 

law oflarge numbers. t A result of this kind occurred first in the work of 
Schneider, and it was utilized later by Roth who gave a simplified 
proof due to Davenport. Another proof, attributed to Reuter, and 
furnishing a slightly stronger theorem, was given by Mahler in his 
tract, and Schmidt subsequently obtained the generalization we 
establish here. 

Lemma 2. Suppose that r 1, ... , r n and k are positive integers and 
that 0 < e < 1. Then the number of non-negative integers 

satisfying 

is at most 

jzm (1 ~ l ~ k, 1 ~ m ~ n) 

k 

~jzm=rm (1 ~m~n), 
l=l 

n 
~ j1m/r m < nfk- en, 

m=l 

( r 1 + r~- 1) ... r n +r:- 1) e-i•ln. 

We commence the proof by observing that the required number N of 
integersjzm is given by 

~vl(jn) · ·· Vn(jln}, 

where the sum is over all non-negative integers j 11, ... ,j1n satisfying 
the given inequality, and vm(j) denotes the number of solutions of the 
equation k 

~ jzm = rm-j 
1=2 

in non-negative integers .?2m, ... ,jkm• that is 

vm(j) = (rm-t~:-2). 

Hence we see that the multiple sum 

is at least N el•2
n. Now the sum can be written alternatively in the form 

t Cf. the papor ofWirMinl( c•itc•d ••nl'lior: Pr1X'.Symp011ia Pure Math. (A mer. Math. Soc.), 
:zo (1971), 213 47. 
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where Pm = 1/k-jmfrw and clearly IPml :::;; 1. But if lxl :::;; 1 then 
ex< 1 +x +x2, and so 

exp ( t~':Pm) < t~':Pm + exp (le2) • 

rm 
Further we have ~ vm(jm) Pm = 0; 

; •• =0 

for Pm can plainly be expressed as 

(rm-.im)frm-(1-1/k), 

and it is easily verified by induction on r that 

~ (r-j+k-2) = (r+k-1), 
i=O k-2 r 

~j(.i+k-2) =r(1_!)(r+k-1). 
i=O k- 2 k r 

Thus, on appealing again to the first of the above binomial identities, 
we obtain 

and this gives the asserted estimate. 

5. Grids 

Let T be a subspace of k-dimensional Euclidean space spanned by 
linearly independent vectors u1, ... , uk_1. By a grid of size 8 on T we 
shall mean the finite set of vectors of the form 

W1 U1 + · · · +wk-1 uk-H 

where Wv . .. , wk_1 run through all rational integers with 1 :::;; w1 :::;; 8. 

Now let Tm (1 :::;; m :::;; n) be any subspaces as above, and let r m be 
a grid of size 8m on Tm. Further let T, r signify the cartesian products 
T1 X ". X Tn and r 1 X ". X r n respectively. we shall denote by p 
a polynomial as indicated at the beginning of § 3 with degree rm in 
x1m, ... , xkm• and we shall signify by ~<fJ a differential operator as in § 2, 
acting on x1m, ... , xkm. The following simple lemma, due to Schmidt, is 
fundamental to the proof of Theorem 7.1. 

Lemma 3. If, for some integers tm ( 1 :::;; m :::;; n) with sm(tm + 1) > r m• 
all polynomials ~p.> ... ~Un> P with .im ~ tm vanish everywhere on r, then 
P vanishes identically on T. 
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It is clear that the lemma follows at once by induction from the case 
m = 1, and it will suffice therefore to prove the latter. Further, one can 
obviously assume, by applying a linear transformation, that Tm is the 
plane xkm = 0, with basis consisting of the first k- 1 rows of the unit 
matrix of order k. Thus, omitting the suffix m, we see that it is enough 
to prove: 

A polynomial P(x1, •.. , xk_1) with degree r vanishes identically if all 
D,.<i>Pwithj ~ tvanishatallintegerpoints (w1, ... ,wk_1) with 1 ~ w1 ~ s, 
where s(t+ 1) > r. 

Here D,.W denotes a differential operator on x1, ... ,xk_1 of order j. The 
assertion is clearly valid for k = 2, since a polynomial in one variable 
with degree r cannot have more than r zeros, and we shall assume the 
proposition when k is replaced by k - 1. If now P does not vanish 
identically then there is a largest integer q such that the rational 
function 

is in fact a polynomial, and since, by hypothesis, s(t+ 1) > r, we have 
q ~ t. Further, by choice of q, one at least of the polynomials 
Q(w1,x2, ... ,xk_1) with 1 ~ w1 ~ s does not vanish identically; let 
this be R. Then D,.<i>R vanishes at all integer points (w2, ••• , wk_1) with 
1 ~ w1 ~ s, where A<i> is any differential operator on x2, ••• , xk_1 with 
order j ~ t- q. But R has degree at most r- sq < (t- q + 1} s, and this 
is plainly contrary to the inductive hypothesis. The contradiction 
establishes the assertion. 

6. The auxiliary polynomial 

For each m with 1 ~ m ~ n we shall denote by L,m (1 ~ l ~ k) linear 
forms in x1m, ... , xkm with real algebraic integer coefficients. Further 
we shall denote by d the degree of the field K generated by all the 
coefficients over the rationals, and we shall signify by Cv c2, ••• numbers 
greater than 1 which depend on these coefficients only. 

Let now r v ... , r n be any positive integers, and let r = max r m. 

Further suppose that 0 < e < 1 and that el•2
n > 2kd. Adopting the 

notation of§ 3, we have 

Lemma 4. There is a polynomial P with degree at most r m in 
x1m, •.• , xkm and with heighl at most cf S'UCh that, for each l with 1 :::;; l :::;; k, 
the index of P with reHprrt to the 1.~1, and r,. is at least nfk- en. 
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It can be assumed, without loss of generality, that, for alll, m, the 
coefficient of x1m in L1m, say a1m, is not 0. Then P has to be determined 
such that, for alll and all non-negative integersjv ... ,jn with 

n 
~ jmfrm < njk-en, 

m=1 

the polynomials 
(j1! ... jn!)-1 (8f8xu)il .. , (8f8x1n)inp 

vanish identically when - L1m, with x1m equated to 0, is substituted for 
x1m, and the factor a1m is included to multiply each of x2m, ... , xkm· 
Now these polynomials are homogeneous in x2m, ... , xkm with degree 
r m- jm and hence, by Lemma 2, they have, in total, at most kN e-!e•n 
coefficients, where N denotes the product of binomial factors occurring 
in the enunciation of the lemma. Each coefficient is a linear form in the 
coefficients of P, and there are precisely N of the latter. Furthermore, 
the coefficients in the linear forms are algebraic integers in K with 
sizes at most c2 (cf. the estimates in § 3). It follows, on utilizing an 
integral basis forK and recalling the hypothesis e!e•n > 2kd, that one 
has to satisfy at most fN linear equations with rational integer 
coefficients each having absolute value at most c~ (cf. § 3, Chapter 6). 
The required result is now obtained from Lemma 1 of Chapter 2. 

7. Successive minima 

We recall from the Geometry of Numbers that ifRis any convex body 
in k-dimensional Euclidean space, then the numbers i\1 (1 ~ l ~ k), 
given by the infimum of all i\ > 0 such that i\R contains l linearly 
independent integer points, are termed the successive minima of R, 
and they have the property that i\1 ... i\k V, where V denotes the 
volume of R, is bounded above and below by positive numbers 
depending only on k. 

We now combine the preceding lemmas to obtain a proposition on 
the penultimate minimum of a certain parallelepiped, which will be the 
main instrument in the proof of Theorem 7 .1. We shall denote by 
Mv ... ,Mk linear forms in x1, ... ,xk with real algebraic integer coeffi
cients constituting a non-singular matrix A, and we shall signify by 
M~, ... , M~ the adjoint linear forms with coefficients given by the 
columns of A-1. Further we shall signify by S some non-empty set of 
suffixes i such that M~ does not represent zero for any integral values, 
not all 0, of the variables; the assumption that Sexists involves, of 
course, some loss of generality. We prove: 
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Lemma 5. For any ?; > 0 there exists c > 0 such that for all positive 
fil, ... , fik satisfying fi1 ... Jlk = 1 and fit ;;::: 1 for i in S, the penultimate 
minimum i\k-I of the parallelepiped !Mil :::;; p1 (1 ~ l:::;; k) exceeds p-t, 
where Jt denotes the maximum of ftl, ... , Jlk and c. 

It will be seen that the lemma immediately implies Roth's theorem, 
that is the case n = 1 of Theorem 7.1; this follows on taking 

MI = alxl-x2, Mz = x2 

and:s to consist just of the suffix 2, as is possible since a 1 is irrational. 
We show first that it suffices to prove a modified version of Lemma 5. 

Suppose that Q ;;::: pk and let w1, ... , wk be defined by Jtz = Q"'l. Then 
since Jll ... fik = 1 we have w1 + ... + wk = 0 and clearly wi ;;::: 0 fori inS. 
Clearly also w1 :::;; 1 for all l and, since again p1 ... fik = 1 we have 
p1 ;;::: Q-1, whence w1 ~ -1. Now for any positive integer N there are 
rationalsw~, ... ,w~ with denominator N satisfying lw,-wll < 1/N and 
lwll :::;; 1 for alll, and also wi + ... +wlc = 0; indeed one has merely to 
take Nw~ = [Nw1] and, having defined w~, ... ,w;_1, to take Nwl as 
[ N w,] or - [- N wz] according as w~ + ... + w/_1 does or does not exceed 
w1 + ... + w1_ 1 . Plainly the w~, ... , wlc belong to a finite set of rationals 
independent of Q, and the minimum i\lc_1 of the parallelepiped 
I .Mil :::;; Q"'f (1 ~ l :::;; k) exceeds Q-I/N i\k-l· Hence it is enough to prove: 

For any real w1, ... ,wk with w1 + ... +wk = 0, lwzl ~ 1 (1:::;; l :E; k) 
and Wt ;;::: 0 for alliin S, and for any?; > 0, there exists 0 > 0 such that, 
for all Q > 0, the minimum i\k-I of the parallelepiped 

exceeds Q-t. 
!Mil :::;; Q"'l (1 :E; l :::;; k) 

We shall suppose that ?; :::;; 1, as obviously we may, and we shall 
signify by d the degree of the field generated by the elements of A over 
the rationals. Let e be any positive number less than s/(8k) 2, let n be 
any integer satisfying the condition preceding Lemma 4, and let 8 be 
defined as in Lemma 1. We shall assume that there is an unbounded set 
of values of Q such that i\k-J ~ Q-t, and we shall ultimately derive a 
contradiction. We select a sufficiently large Q1 in this set, that is 
Q1 > c1, where c1, like c2, c3 below, depends only on A, k, n, d, e, 8, ?; and 
thew's. We then select further elements Q2, ... , Qn in the set such that 
Q!f > Qm-l (1 < m :E; n), whence clearly Q1 < ... < Qn. Finally we 
choose positive integers r1, ... ,rn such that Q~r~ > Qn and 

Qp ~ Q~ ~ Q[l+•'lr, (1 :E; m ~ n); 

then plainly tho corulition preceding Lemma 1 is satisfied. 
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We observe now that the hypotheses of Lemma 4 hold when 
L1m = .Mi("m), where "m denotes the vector (x1m, ... , xkm); let P be the 
polynomial constructed there. Further we note that, for any Q as 
above, there exist linearly independen~ integer points u1, ... , uk with 
u1 in A.1R, where R denotes the given parallelepiped and A.1, •.• , A.k its 
successive minima. Moreover, there is a linear form L with relatively 
prime integer coefficients, unique except for a factor ± 1, which 
vanishes at Uv ... , uk_1 ; we take u 1m and Lm to be these u1 and L 
respectivelywhenQ = Qm. We shall verify later that, ifQissufficiently 
large, then q = IlLII satisfies Qc :E; q :E; Qc', where c, c' are positive 
numbers depending only on ~and d. Assuming this for the present, it 
follows that all the hypotheses of Lemma 1 are satisfied with 'YJ = cfc', 
provided that t;_, and so also q1 and Q1, are large enough. Hence we 
conclude that the index of P with respect to the Lm and r m is at most e. 

We proceed to prove that, with the notation of§ 5, all polynomials 
M'with n 

~ jmfrm < 2en 
m=l 

vanish everywhere on r, where r m is the grid of size [e-1] + 1 on the 
space Tm spanned by u1m (1 :E; l < k). This implies, by Lemma 3, on 
taking tm = [erm], that all polynomials D..P, with "'2:.jmfrm <en, vanish 
identically on the n(k- 1 )-dimensional space of solutions of 

L1 = ... = Ln = 0. 

But the latter contradicts the above conclusion concerning the index 
of P, and the contradiction establishes the lemma. To prove the pro
position, let AP be any of the polynomials in question and let P' be the 
polynomial in new variables Ylm obtained from D..P by the linear 
substitution Ylm = Lzm· Then it is readily verified that P' has height at 
most c~, where r = max r m· Further, since, by assumption, A.k-l :E; Q-t, 
we have for any Xm on r m 

IY1ml < k(e-l+1)Q::f-t' < Q~-tc. 

Thus, by Lemma 4, it follows that, for all points on r, we have 
IM'I < c~e8, where 

andj1m are some non-negative integers with 

k n 
~jim :E; rm (1 :E; m :E; n), 
l-1 

nfk- ~ j,mfrm < 3en (1 :E; l :E; k). m-1 
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Denoting, for brevity, the left-hand side of the last inequality by h1, 

we see that, by the first inequality, h1 + ... +hk ~ 0, and so both 
inequalities together imply that lhd < 3kne. Further, since lwd ~ 1, 
we obtain, in view of the initial choice of r1, ..• ,rn, 

k n 
8 ~ r1 logQ1 ~ ~ {(w1-iS)j1mfrm+2e}. 

l=l m=l 

But now, by virtue of our estimate for h1 and the hypothesis 

w1 + ... +wk = 0, 

the double sum here differs from -lsn by at most 8k2ne. Since, by 
definition, e < s/(8k)2, it follows that !API < QiH·nr < 1, provided Q1 

is sufficiently large. On the other hand, AP is a rational integer for all 
points on r, and hence AP = 0, as required. 

It remains only to prove the assertion concerning q = IlLII· Let U be 
the matrix with columns u1, ... , uk and let v1, ... , vk be the rows of 
U-1• Then clearly pvk is the coefficient vector of L for some rational p. 
Since L(uk) is an integer and vkuk = 1, pis in fact an integer. Further p 
divides det U, for plainly U-1 = adj Ufdet U.t Furthermore we have 
det U ~ 1, where the implied constant depends only on A,~ for 
certainly R has volume ~ 1 and hence, by the property of successive 
minima quoted at the beginning, det (AU)~ 1. It follows that each 
element of (det U) vk is a rational integer~ q. Hence the element in 
the kth row and lth column of adj (AU), namely (det (AU)) Ml(vk), is 
an algebraic integer with size ~ q. But by hypothesis we have 
i\k_1 < Q-t and w1 + ... +wk = 0, and thus the element is also 
~ Q-wz-(k-1)1;, We conclude that, for l in S, the element is both 
~ q-d and~ Q-<k-1>C, and, since Sis assumed non-empty, this gives 
the required lower bound for q. The upper bound follows from the 
identity U-1 = (AU)-1 A, on observing, as above, that the elements in 
the kth row of (AU)-1 are ~ Q. 

8. Comparison of minima 

We prove first a general lemma of Davenport, and we proceed then 
to show that, with some proviso, the minima i\k_1 and i\k of the 
parallelepiped of Lemma 5 differ only by a small factor. Constants 
implied by ~ will depend only on k. 

t • dot 1 and • adj 1 are abbreviation• for detenninant and adjoint respectively. 
t We are using Vinogradov 1a notation; by a <C b one mea.na Ia I < be for some constant 

c, and aimile.rly for ,.. . 
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Lemma 6. Let 4, ... , Lk be real linear forms with determinant 1 and 
let A.1, ••• , A.k be the successive minima of the parallelepiped 

IL11 :::;; 1 (1 :( l :::;; k). 

Suppose that p1 ~ ••• ~ Pk > 0 and that 

PIAl:::;; ..• :s;;pkAk, Pl···Pk = 1. 

Then for some permutation p~, ... , p~ of p1, •.. , Pk• the successive minima 
A.~, ... ,A.~oftheparallelepipedp!JL1 1:::;; 1 (1 :( l:::;; k) satisfy 

p;i\, ~A.;~ p;A., (1:::;; 1:::;; k). 

Proof. There certainly exist linearly independent integer points 
x10 ••• , xk such that one at least of JL1 J, ... ,ILk I assumes the value A.1 at 
x1, and we denote by 81 the space spanned by x 10 ••• , x1• Further, for 
each l ~ 2, there is a non-trivial linear relation a1L1 + ... +a1L1 = 0 
satisfied identically on Sj_1, and L1, ... , Lk can be permuted so that la11 
is maximal; this gives 

141 + ... + ILI-11 >!(ILl!+ ... + JL,i) 

identically on s,_l> whence by induction 

141 + ... + IL,I ~ 2l-k(IL11 + ... +ILk!) 

identically on Sj for l = 1, 2, ... , k. Now for any j it is clear that every 
point in sj not in sj-1 satisfies 

max (JL11, ... , l4ci) ~ A.1, 

and thus, in view of the inequality obtained above, it satisfies also 

max(pl!Ltl• ···•Pki4D ~PiAl. 
By hypothesis, p1i\1 ~ p1i\1 for j ~ l, and the required lower bound for 
Az follows on taking p~, ... , p~ to be the permutation of p1, ... , Pk 
inverse to that associated with L1, ... , Lk. The upper bound is a conse
quence of the equation p1 ..• Pk = 1 together with the property, noted 
earlier, that A.1 •.• A.k and i\~ ... i\~ are both ~ 1 and ~ 1. 

Lemma 7. The last two minima of the parallelepiped of Lemma 5 
satisfy Ak-I ~ A.kp-kt, provided that A1Jtt > p-t for alliin S. 

Proof. The hypotheses of Lemma 6 hold with L1 ( 1 :::;; l :::;; k) given by 
p,-1M, and 

Pt = pfA.z (1 :::;; l < k), Pk = pfA.k-1• 
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where p is defined by the equation p1 ... Pk = 1. Let p~, ... , p~ be the 
permutation of p1, .. . ,pk indicated in the lemma, and let ttl= 111/Pz· 
Assume first that tti > 1 for alliin S. Then from Lemma 5 with 111 
replaced by p;, we infer that, for any s' > 0, there exists c' > 0 such 
that i\~_1 > p'-t, where p,' denotes the maximum of p~, ... ,p,~ and c'. 
On the other hand, from Lemma 6, i\~_1 ~ pk_1A.k_1 = p, and clearly, 
since i\1 ••• i\k ~ 1, we have pk ~i\k_1fi\k. Thus it suffices to prove that 
p,'t ~ p~ if(' is chosen sufficiently small. But by hypothesis, since Sis 
assumed non-empty, we have /o.. 1p > p,-C; further, since i\1 > i\1 for 
alll, we see that p }> i\1 and A.~- 1 i\"_1 ~ 1. Hence we obtain 

tt' ~ tt"-k-1/P ~ p,i\!k < p,k<~Hl+l, 

and the required result follows. If, contrary to the above assumption, 
tti < 1 for some i inS, then, on observing that by hypothesis 

PPi > A1fli > p,-~, 

we obtain p > fl-r, and the required result again follows. 

9. Exterior algebra 

For any vectors Xv ... , x 1 in Rk with 1 ~ l < k, one denotes by x 1 /1. ••• /1. x 1 

the vector in Rm whose elements are the m = (7) subdeterminants of 

order l formed from the k by l matrix with columns x 1, .•. , x 1• We shall 
utilize some well-known properties of this product; in particular, we 
shall require Laplace's identity 

(x1 /1. ••• /1. x 1)(y1 1\ ••• /1. y1) = det (xs1), 

where on the left one has the usual vector dot product, and also the 
relation det Au = ( det A )Zmlk, 

which holds for any matrix A of order k with column vectors av ... , ak, 
say, where Au = ai, /1. ••• /1. a.£

1 
and u runs through all sets of l distinct 

integers iv ... , i1 from 1, ... , k. t 
We shall need, in addition, the following lemma, due to Mahler, on 

compound convex bodies. A will signify a matrix as above with 
det A = 1, and, as in§ 8, constants implied by ~ will depend only on k. 
Further we shall denote by ax the linear form in the elements of x with 
coefficient vector a. 

t Rhnrt prnnfK arn givon in Sohmitlt'a tre.ot (Bibliography). 
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Lemma 8. The successive minima i\1, ... , i\k and v1, ... , vm of the 
parallelepipeds JatxJ ~ 1 (1 ~ i ~ k) and JAu XI ~ 1, respectively, 
satisfy 

i\,.i ~ vi ~ i\,.i (1 ~ i ~ m), 

where r runs through all sets a as above, i\7 = IIi\1, the product being taken 
over all j in r, and i\,.

1 
~ i\,.

1 
~ •• • ~ i\,.m. 

Proof. Let Xv ••. , xk be linearly independent integer points such that 
Jatx1J ~ i\1 (1 ~ j ~ k), and let X,. be defined like Au above, with x in 
place of a. By Laplace's identity we have 

JAuX,.J = Jdet(aix;)J ~ mli\,., 

where i, j run through all elements of a, r respectively. Hence, for 
each i with 1 ~ i ~ m, we have JAuX,.iJ ~ i\,.i and so vi~ i\,.i. But 
since, by hypothesis, det A= 1, we have det Au= 1, and thus the 
volume of the parallelepiped !Au XI ~ 1 is 2m. Thus v1 ... vm ~ 1 and 
since i\,.

1 
••• i\,.m ~ 1 it follows that vt ~ i\.,i, as required. 

10. Proof of main theorem 

It will suffice to prove Theorem 7.1 under the assumption that 
cx1, ••• , cxn are real algebraic integers, for clearly the general result then 
follows on multiplying each cx1 by the leading coefficient in its minimal 
polynomial. We shall signify by a1 ( 1 ~ j ~ n) the vector in Rn+1 given 
by (e1, cx1), wheree10 ••• ,en denotetherowsofthe unitmatrixoforder n. 
Further, for brevity, we shall write k = n+ 1, and we shall denote by 
ak the vector (0, ... ? 0, 1) in Rk. Constants implied by ~ or ~ will 
depend only on~ •... , cxn, k, e and the quantities 6, 'to be defined below. 

We show first that the theorem is a consequence of the following 
proposition. 

For any 6 > 0 and any positive numbers p 1, ••• , flk with p1 •.. flk = 1 
and Jt; < 1 ( 1 ~ j < k), the first minimum i\1 of the parallelepiped 
Ja1xj ~ Jt; (1 ~ j ~ k) exceeds p-€ if p ~ fik and p ~ 1. 

The proof proceeds by induction on n; we have already remarked 
that the case n = 1 is an immediate consequence of Lemma 5, and we 
assume now that the theorem holds when n is replaced by n- 1. Let 
q be a positive integer satisfying the inequality occurring in the 
enunciation, and let 

Pi = ~/(In> JJqcxiJJ (1 ~ j ~ n). 
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Further let Pk = (p1 ... Pn)-1, where k = n+ 1 as above. Then clearly 
Pk > ql+ie and moreover the first minimum .A1 of the parallelepiped 
Ia; XI :E:; P; (1 :E:; j :E:; k) is at most q-e/(2n>. But, on appealing again to the 
given inequality and applying the inductive hypothesis, we see that, 
if q ~ 1, then P; < 1 for allj < k: Hence the proposition above shows 
that .A1 > p-f for any 6 > 0 and any p with p ~ 1 and p ~ Pk· Further
more, bythecasen = 1 ofthetheorem, wehavep; > q-1 (1 :E:;j :E:; n), 
whence Pk :E:; qn. Plainly the estimates for .A1 are inconsistent if 6 is 
sufficiently small, and the contradiction proves the theorem. 

Preliminary to the proof of the proposition, we observe that, with 
the notation of§ 9, the linear forms M., = A., X satisfy the hypotheses of 
§ 7 with S given by those sets T which include k. For it is easily verified 
from the Laplace expansions of A that, as u runs through the comple
ment ofT in 1, ... , k, the forms A.,. X constitute the set adjoint to the 
M.,, except possibly for a sign change; further, if u does not include k, 
we have 

where the summation is over all j in u, on the right there occur the 
co-ordinates of X, and u- j + k denotes the set u with k in place of j. 
By hypothesis 1, cx1 , ••• , cxn are linearly independent over the rationals, 
and thus we see that A.,. X =1= 0 for all inte~r vectors X =1= 0, as required. 

The proof of the proposition proceeds by induction on k; the result 
plainly holds for k = 2 by Lemma 5, and we assume now that it has 
been verified for all values up to k- 1. Let l be any integer with 
1 :E:; l < k and, for any set T of l distinct integers from 1, ... , k, let 
p., = IIPJ, where the product is over allj in T. By Lemma 7 we see that 
the successive minima J'1, ... , vm of the parallelepiped j.M,.j :E:; p., satisfy 
vm-l ~ vmp-kt;, for any~ > 0, provided that p ~ 1, p ~ p., for all T and 
v1 p., > p-t;, forT inS. Further, with the notation of Lemma 8, it is clear 
that T m and Tm-l consist of the integers k -l + 1, k -l + 2, ... , k and k -l, 
k-l + 2, ... , krespectively. Thus, under the above conditions, we have 

.Ak-r.Ak-1+2 ... .Ak ~ .Ak-1+1"' .Akp-kr,, 

that is .Ak-l ~ .Ak-l+lp-kC. The required inequality .A1 > p-f. follows on 
applying the latter with l= 1,2, ... ,k-1, noting that .Ak~ 1, and 
taking ' sufficiently small. 

Since evidently p., :E:; Pk for all T, it remains only to prove that, forT in 
S, v1p., > p--cforany p withp ~:1 andp ~ Pk· Infactitsufficestoshow 
that A 1p~l1 > p-C, for, again from Lemma 8, we have v1 ~ A1 •.• .A1 ~ A~. 

Now, by the definition of A1, the pnrallelepiped ja1xj =E; A1P; ( 1 =E; j =s:; k) 
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contains an integer point x =!= 0; in fact the kth co-ordinate ofx is not 
0 since A1 ~ 1 by Minkowski's linear forms theorem, whence 

A1P; < 1 ( 1 ~ j < k), 

and a1 x is simply the jth co-ordinate of x when the kth co-ordinate 
vanishes. It follows that, if Tis any element of S, then the parallel
epiped in R1 given by laixl ~ A1pi, where i is restricted toT and the 
co-ordinates of x with suffixes not in Tare disregarded, also contains an 
integer point x =!= 0. Hence the first minimum A~ of the parallelepiped 
laixl ~ pi in R1, where Pi = PiiP~'1, is at most A1p~iz. It is therefore 
enough to prove that A~ > p-t;,; but this follows from the inductive 
hypothesis since clearly II pi = 1 and pT > 1. The theorem is herewith 
established. 
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MAHLER'S CLASSIFICATION 

1. Introduction 
A classification of the set of all transcendental numbers into three 
disjoint aggregates, termed S-, T- and U-numbers, was introduced by 
Mahlert in 1932, and it has proved to be of considerable value in the 
general development of the subject. The first classification of this 
kind was outlined by Maillett in 1906, and others were described by 
Perna§ and Morduchai-Boltovskoj ;11 but to Mahler's classification 
attaches by far the most interest. 

As in the previous chapter, we define the height of a polynomial as 
the maximum of the absolute values of its coefficients, and we shall 
speak of the height only for polynomials with integer coefficients, not 
all 0. Let now g be any complex number, and for each pair of positive 
integers n, h, let P(x) be a polynomial with degree at most nand height 
at most hfor which IP(g)l takes the smallest positive value; and define 
w(n, h) by the equation IP(g)l = h-nw(n,h>. Further define 

wn = limsupw(n,h), w = limsupwn, 
h-+oo n-+co 

and let v be the least positive integer n for which wn = oo, writing v = oo 
if, in fact, wn < oo for all n. Mahler characterizes the set of all complex 
numbers as follows: 

A-number 
S-number 
T-number 
U-number 

w = 0, v = 00, 

0 < w < oo, v = 00, 

w = oo, v = 00, 

w = oo, v < 00. 

We shall prove in § 2 that the A-numbers are just the algebraic 
numbers; thus a transcendental number g is an S-number if w(n, h) is 
uniformly bounded for all n, h, aU-number if, for some n, w(n,h) is 
unbounded, and aT-number otherwise. Further we have: 

t J.M. 166 (1932), 118-36. 
t Bibliography. 
§ Oinrn. Mat. Battaglini, 52 (1914), 305-65. 
II M11t. Slwrnik, 41 (1934), 221-32. 
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Theorem 8.1. Algebraically dependent numbers belong to the same 
class. 

Theorem 8.2. Almosl all numbers are S-numbers. 
Here 'almost all' is interpreted in the sense of Lebesgue measure 

theory, the linear and planar measures being taken for the real and 
complex numbers respectively. 

The integer v defined above is called the degree off It is clear that 
the Liouville numbers, mentioned in Chapter 1, are U-numbers of 
degree 1, and LeVequet proved in 1953 the existence of U-numbers of 
each degree; we shall establish the latter in§ 6. For many years it was 
an open question whether any T-numbers existed but, in 1968, an 
affirmative answer was obtained by Schmidtt on the basis of Wirsing's 
early version of Theorem 7.2, and this will be the theme of §7. It is 
customary to subclassify the S-numbers according to 'type', defined 
as the supremum of the sequence wv w2, •••• We shall show in§ 2 that, 
for any transcendental£, wn is at least 1 or !(1- 1/n) according as£ is 
real or complex, whence the type of£ is respectively at least 1 or t· In 
1965, Sprindzuk, confirming a conjecture of Mahler, proved that 
almost all real and complex numbers are S-numbers of type 1 and -! 
respectively. Moreover it was recently demonstrated by a refinement 
of this result that there exist S -n urn hers of arbitrarily large type. Thus, 
apart from a small gap in the kind ofT-numbers that have so far been 
exhibited, the transcendental spectrum is, in a sense, complete. The 
latter measure-theoretical propositions will be the topic of the next 
chapter. 

In the light of Theorem 8.2, one would expect any naturally defined 
number such as e, rr, e" and logcx for algebraic ex not 0 or 1 to be an 
S-number. In 1929, Popken proved that indeed e is an S-number of type 
1, and we shall confirm the result in Chapter 10. Theorem 3.1 shows 
that 17', and in fact any non-vanishing linear combination oflogarithms 
of algebraic numbers with algebraic coefficients, is either an S- or a 
T-number, but the latter possibility has not, as yet, been excluded. 
From the case n = 1 of Theorem 7.1 one sees, for instance, that 

co 
.I: a-lin is transcendental for any integers a ~ 2, b ~ 3, and, in the 

n=l 

same context, Mahler§ proved in 1937 that also the decimal ·1234 ... , 

t J. London Math. Soc. 28 (1953), 220-9. 
t Symposia Math. IV (Academic PreRK, 1970), pp. 3-26. 
§ N.A.W. 40 (1937), 421-8. 
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where the natural numbers are written in ascending order, is tran
scendental; and here again it has been proved that these are either S
or T-numbers.t Fore", however, the possibility that it is a Liouville 
number has not even been excluded at present. Note that, by virtue 
of Theorem 8.1, the above results enable one to furnish many examples 
of algebraically independent numbers; indeed if£ is any U-number, 
such as for instance ~10-n!, and ifrJ is, say, e or 7T or 1:10-10n or Mahler's 
decimal, then certainly £, 11 are algebraically independent. 

In 1939, Koksma introduced a classification closely analogous to 
that of Mahler, which has also proved illuminating.t Let £ be any 
complex number and for each pair of positive integers n, h, let a be an 
algebraic number with degree at most n and height at most h such 
that 1£-al takes the smallest positive value; and define w*(n,h) by 

the equation l£-al = h-nw*(n,hl-1, 

Koksma classified the complex numbers as A*-, S*-, T*- or U*
numbers in the same way as Mahler, but with w* in place of w. Thus 
a transcendental number £is an S*-number if w*(n, h) is uniformly 
bounded, a U*-number if, for some n, w*(n, h) is unbounded, and 
a T*-number otherwise. There is an exact correspondence between the 
two classifications, the S*-, T*- and U*-classes being in fact identical 
with the S-, T- and U -classes respectively; moreover, the functions 
wn and w~ take comparable values. Indeed it is easily verified that 
w~ ~ wn, and simple lower bounds for w! in terms of wn were obtained 
by Wirsing.§ These imply, in particular, that w! = 1 when wn = 1, 
whence, in view ofSprindZuk's theorem, we have w! = 1 for almost all 
real£. But it remains an open question whether w~ ~ 1 for all real£. 

2. A-numbers 
We prove here that the A-numbers are just the algebraic numbers. 
Suppose first that£ is a real transcendental number. We consider the 
set of all numbers Q(£), whereQdenotes a polynomial, not identically 0, 
with degree at most nand with integer coefficients between 0 and h 
inclusive. The set evidently contains (h+ 1)n+1 -1 elements each with 
absolute value at most ch for some c = c(n, £). If now we divide the 
interval [ -ch,ch] into hn+1 disjoint subintervals each.oflength 2ch-n, 
then there will be two distinct numbers Q1(£) and Q2(£) in the same 

7 

t Acta Math. Ill (1964), 97-120. 
: For referenooa and furthor di110U1111ion 1100 Hehnnidnr (Bibliography). 
I J.M.l06 (1961), 67· 77. 
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subinterval. Thus the polynomial P = Q1 - Q2 satisfies jP@I < 2ch-n 
and so wn ~ 1. Similarly, if g is complex, we divide the intervals 
[ -ch, ch] on the real and imaginary axes into at most h!<n+t> disjoint 
subintervals each oflength at most c'h-i<n-t> for some c' = c'(n, g), and 
there will be two distinct numbers Q1(g) and Q2(g) with real and 
imaginary parts in the same subintervals. Thus we have 

wn ~ !(1-1/n). 

Now if g is algebraic with degree m, then for any polynomial Pas 
above, P(g) is an algebraic number with degree at most m and height at 
most ch for some c = c(n, g). Hence either P(g) = 0 or jP@I > c'h-m 
for some c' = c' (n, g) > 0. It follows that nw(n, h) is uniformly bounded 
for all n, h, and this proves the assertion. 

3. Algebraic dependence 

Our purpose here is to prove Theorem 8.1. Suppose that g, 'IJ are 
algebraically dependent. Then they satisfy an equation Q(g, 1J) = 0, 
where Q(x, y) is a polynomial with, say, degree k in x, lin y, and with 
algebraic coefficients, not all 0. Without loss of generality we can 
suppose that g, 1J are transcendental, for otherwise they would both 
be algebraic and so belong to the same class; also we can suppose that 
the coefficients of Q are rational integers, for this can evidently be 
ensured by taking, in place of Q, a product of its conjugates. Moreover 
we can suppo~e that all the zeros g1 = g, g2, ... , gk of Q(x, 17) are tran
scendental; for if one ofthese were algebraic then its minimal defining 
polynomial, say p(x), would divide all the coefficients of Q(x, y) 
regarded as a polynomial in y, and it would therefore suffice to con
sider Q(x, y)fp(x) in place of Q(x, y). 

Let now P and w(n, h) be defined as at the beginning of§ 1 and put 

J = P(g1) ..• P(gk). 

Clearly we have 

where c1, like c2, c3 below, depends only on g, 'IJ, n and Q. Further, J is 
symmetric in g1, ... , gk and so, by the fundamental theorem on sym
metric functions, it can be expressed as a polynomial in the elementary 
symmetric functions with total degree at most n and with height at 
most c2 hk. Now each elementary symmetric function is given by 
± q1jq0 , where 

Q(x, 1J) = q.,('1/) xk + q,(1J)xk-1 + ... + qk(1J). 
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Hence q~J is a polynomial in 1J with degree at most ln and height at 
most h' = c3 hk. If therefore w'(n, h'), w~ and w' are defined for 1J in the 
same way as w(n, h), wn and w were defined for g, we have 

h'lnw'(ln,h') ~ clhnw(n,h)-k+l. 

This gives klnwin ~ nwn- k + 1, whence klw' ~ w. Similarly, on inter
changing g and 1J we obtain klw ~ w' and Theorem 8.1 follows. 

4. Heights of polynomials 
We establish now two lemmas which will be employed in the proof of 
Theorem 8.2 and in the next chapter. The propositions will be proved 
for polynomials with arbitrary complex coefficients, and here no 
restriction will attach to the definition of the height. P(x) will denote 
a polynomial with degree nand height h, and constants implied by 
~ or ~ will depend only on n. 

Lemma 1. For some integer j with 0 :E:; j :E:; n we have 

h <:{ !P(j)! ~ h. 

Proof. It is readily verified that 

n P(j) A(x) 
P(x) = ~ A'(j) ( ')' i=O X-J 

where A(x) = x(x -1) ... (x-n), and A' denotes the derivative of A. 
Now we have !A'(j)! ~ 1, and clearly also the coefficients in the poly
nomials A(x)f(x- j) are ~ 1. Thus we see that !P(j)l ~ h for some j, 
and obviously we have !P(j)! ~ h for all j. This proves the lemma. 

Lemma 2. If P = P1P2 ... Pk, where Pi is a polynomial with height 
hi, then 

Proof. The right-hand estimate follows at once from the observation 
that e'/ery coefficient in P can be expressed as a sum of ~ 1 terms each 
given by a product of k coefficients, one from each of the Pi. 

To establish the left-hand estimate, we begin by choosing an integer 
j to satisfy Lemma 1, and we denote by Hi the height of the polynomial 
Pt(x + j). It is clear, on expressing .Pt(x) as a polynomial in x- j, that 
hi~ H1• Now if 1J is any zero of P(x + j), we deduce from the mean value 
theorem 

h <t..IPU)I = IP(1J+j)-P(j)l = I'IIIP'(g+j)l 
7·3 



90 MAHLER'S CLASSIFICATION 

for some g with lgl ~ l?Jl· Hence if I?JI < 1, we have h ~ l?Jl h, that is 
I "'I ~ 1. But the zeros of .Pt(x+j) are included in those of P(x+j), and 
each coefficient in .Pt(x + j) can be written as the product of the con
stant coefficient .Pt(j) together with an elementary symmetric function 
in the reciprocals of the zeros. Thus we obtain 1-Pt(J)I ~ ~. and the 
lemma follows since P(j) = P1(j) ... Pk(j). 

5. S-numbers 
We proceed now to prove Theorem 8.2 for complex numbers in terms 
of planar Lebesgue measure; the argument for real numbers is similar . 
.Again we shall speak of the height only for polynomials with integer 
coefficients. 

We note first that if g is any complex number and Pis any irreducible 
polynomial with degree at most n and height at most h, then the 
nearest zero IX of P tog satisfies 

lg-IXI ~ 2niP(g)l IP'(IX}!-1 ; 

for if a' is any other zero of P we have 

IIX-IX'I ~ lg-IXI + lg-IX'I ~ 21g-1X'I· 

Further we observe that !P'(IX)I ~ h-n; for if p denotes the leading 
coefficient of P and if IX1, ... , 1Xm are any distinct conjugates of IX then, 
on applying Lemma 2 with Pi given by x- IX-t, one sees that the 
algebraic integert pcx1 ... 1Xm is~ h, whencethenormofP'(~X)multiplied 
bypn-lis ~ hnlP'(1X)J. IfnowgisaT-or U-numberthen, byLemma2, 
there exist, for some n, infinitely many polynomials P as above such 
that !P(g)! < h-4n, and so the nearest zero IX of P to g satisfies 
lg -lXI ~ h-3n. Hence every T- and U-number belongs to the elements 
of infinitely many sets S(n, h) for some n, where S(n, h) consists of all 
discs centred on the algebraic numbers with degree at most n and 
height at most h, and with radius h-2n. But there are ~ hn+l elements 
in each S(n, h) and thus their total area is ~ h-2• Since Lh-2 converges, 
it follows that the set of all T- and U-numbers has measure zero, as 
required. 

6. U-numbers 
We establish here the existence of U-numbers of each degree. In fact 
we shall show that, for any positive integer n, {;1/n is a U-number of 

00 

degree n, where ?; =! + I: 10-mt. Indeed we shall prove, more 
m-1 

tIt is well known that thiK iH n.n n.lgehra.in integer; ~Po f'l.g. Heeke (Bibliography). 
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generally, that g is a U-number of degree n if there exists a sequence 
IX1, IX2, ... of distinct algebraic numbers, with degree n, satisfying 

(1) 

where hi denotes the height of IXi and w1 ~ oo as j ~ oo, provided that, 
for some r ~ 1, we have 

hj < hj+l < hjWJ (2) 

for all sufficiently large j. Clearly g = ~l/n satisfies (1) and (2) with 
IX; = (p1jq1)11n, where 

p1 = 10i! ( 1 + 3 m~l10-m!), q1 = 3: 10i1, 

and withw1 =j,r = 2; also~X1 hasexactdegreensinceq1 isnotaperfect 
power. 

It suffices to show that if (1) and (2) hold then there are only finitely 
many algebraic numbers fJ with degree at most n-1 satisfying 

(3) 

where b denotes the height of fl. For then n is the least positive integer 
for which there exist sequences IX1, IX2, . . . and Wv w2, . . . as above 
satisfying (1), whence g is a U*-number of degree n and so also a 
U-numberofthesamedegree. To verify this connexion between U- and 
U*-numbers, note that if P;(x) is the minimal defining polynomial of IXi 

then ( 1) gives, for all sufficiently large j, 

1-P;(g)l ~ hjwi+n ~ hjlwi, 

where the implied constant depends only on g and n, and, conversely, 
if there were a sequence of polynomials P;(x) (j = 1, 2, ... )with degree 
at most n-1 and height at most h1 such that !P;(g)l < hjwi then the 
nearest zero IX1 of P; tog would satisfy (1) with w1 replaced by w1jn. 

Now suppose that fJ is an algebraic num her with degree at most n- 1 
such that (3) holds, and let j be the integer which, for b sufficiently 
large, satisfies 

(4) 

in the sequel we shall write briefly a, h, w for IX1, hi, w1• From ( 1) and 

(3)wehave IIX-fJI ~ lg-al+l;-{31 <h-w+b-<2n>'r, 

and, from (2) and (4), the terms on the right are at most (bh)-2n1
, 

provided that w > 4n1 . On the other hand, IX- fJ is a non-zero algebraic 
number with degree at moRt n2, and each conjugate has absolute value 
~ bh, where the impli(ld conHt1mt dt1pcndH only on n; further, the 
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same estimate obtains for the leading coefficient m the minimal 
defining polynomial. Hence 

and thus we have a contradiction if b is sufficiently large; the contra
diction establishes the result. 

We remark finally that the inequality !ex- PI ~ (ab)-n2 implicit in 
the above argument, where ex, p denote distinct algebraic numbers 
with degrees at most n and heights a, b respectively, and the implied 
constant depends only on n, can be much improved. Indeed, by 
considering the norm of ex- p and using the result employed in § 5 on 
products of conjugates of algebraic numbers, one easily obtains 
lex-PI~ a-1b-m, where l, m denote the degrees of the fields generated 
by p over Q(cx) and ex over Q(p) respectively. A special case of the 
latter inequality was discovered by A. Brauert in 1929, but, curiously, 
the full result was recorded only relatively recently. t 

7. T-numbers 
These exist, as we now show. To begin with, let cx1 , cx2, ••• be any non
zero algebraic numbers and let Vv v2, ••• be any real numbers exceeding 
1. We shall prove that there exists a sequence y1,y2, ••• of non-zero 
numbers with Yifcx1 rational such that, if hi denotes the height of Yi• 
then Hi+l > 2H1, where Hi= hjJ, and furthermore, Yi+l lies in the 
interval ~ consisting of all real x with 

!Hjl < x-yi < !Hjl; 

in addition, we shall show that the sequence can be chosen so that, for 
some numbers i\1 , i\2, ••• between 0 and 1 exclusive, we have 

IYi- PI > B-1 

for all algebraic numbers P with degree n ~ j distinct from Yv ... , y1, 

where B = i\;1b(3nl
4 and b denotes the height of p. Clearly then, 

y 1, y 2, .•• tends to a limit g which satisfies lg-PI ~ B-1 for all algebraic 
numbers p distinct from y 1 , y 2, .•• ,and also 

!Hj1 ~ g-yi ~ Hj1 

for all j. We now take v1 = (3n1)4, where n1 denotes the degree of cx1, 

t J.M. 160 (1929), 70-99. 
t For references and further work in this context. see Michigan Math. J. 8 (1961), 

149-59 (R. Giiting). 
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and we select ct1, ct2, ••• so that the equation n1 = n has infinitely many 
solutions for each positive integer n. Then~ is a T*-number and hence, 
by observations similar to those recorded in §6, also aT-number. 

We shall in fact construct y1, y2, ••• so that four further conditions 
are satisfied. Let~ be the set of all x in~ such that lx-PI > 2B-1 

for all algebraic numbers p with degree n ~ j which are distinct from 
y1, ••• , y1 and satisfy B > H1. Then we shall ensure that (i) y1 is in 
Jj_1, (ii) the measures of ~ and Jj satisfy I.Jil > t 1~1, (iii) we have 
I'YJ- PI > 2B-1 for all P =l= y1 with degree j, (iv) if y1fct1 = p1jq1 as a 
fraction in its lowest terms, with q1 > 0, then I'YJ- PI > qj1 for all p 
with degree n ::::; j and with b3n ::::; q1• 

To define 'Yv we note first that, for every large prime qv there are 
~ q1 numbers y of the form (pJq1) ct1 in the interval ( 1, 2), where the 
implied constant depends only on ct1, and these have mutual distances 
~ q11• Further, there are ~ qf rationals p with b3 ::::; q1 and so there are 
~ qf numbers ysatisfying IY-PI ::::; q11 for at least one such p. We can 
therefore select y1 so that (iv) holds, and then, by Theorem 7 .2, we can 
choose i\1 so that the conditions concerning IY1 - PI are satisfied. We 
shall show in a moment that also (ii) holds in the case j = 1 if q1 ~ 1. 

Now suppose that 'Yv ... , y1_1 have already been defined to satisfy 
the above conditions; we proceed to construct y1. Constants implied 
by ~ or ~ will depend only on the numbers so far specified, including 
possibly i\1, ... , i\1_1. First let Jj_1 be defined like Jj_1 but with the 
additional restriction that the heights of the p in question satisfy 
b3n ~ q1. Clearly the number of p for which the latter inequality holds 
is ~ qf and so Jj_1 consists of~ qf intervals. Further, Jj_1 includes 
Jj_1 and so, by (ii), we have 1Jj_11 ~ ! 1~-1 1 ~ 1. It follows that, for 
any large prime q1, there are ~ q1 numbers y in Jj_1 of the form 
(p1jq1) ct1, where p1 is an integer ~ q1 with (p1, %) = 1. Furthermore, 
any such y is in fact in Jj_v for if the height of p satisfies b3n > q1 then 
B > q}3nla and thus, on noting that (q1jp1) p has height ~ qfb, we obtain 
from Theorem 7. 2 

IY-PI ~qj1(qfb)-3n > 2B-1. 

Now, as above, there are ~ qf numbers p satisfying the hypotheses of 
(iv) and hence one can select y = y1 in Jj_1 so that this condition is 
valid. Then clearly we have I'YJ- PI > B-1 for all p distinct from 
'Yv ... , y1_1 with degree n < j and with B > H1_1; and indeed this holds 
also for B ::::; l/1_1, for then, taking k as the least suffix ~ n for which 
B ::::; Ilk and app<'aling to (i) or (iii) with j = k according ll.!l k > n or 
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k = n, we obtain 

lr1- PI;:,: lrk-PI-Iri-rkl > 2B-1 -H;; 1
;:,: B-1

. 

We now use Theorem 7.2 and choose,\ so that lr1-PI > 2B-1 for all 
algebraic numbers p =l= y1 with degree n = j. 

It remains only to show, as in the casej = 1, that (ii) will be satisfied 
if q1 is sufficiently large. Now we have lx- PI > 2B-1 for all x in I; and 
allp =l= y1withdegreen ~jandwith.Hj < B ~ H~.Forifb3n ~%then, 
since Hj ~ qji and v1 > 1, it follows from (iv) that 

lx-PI ;:,: lrj-PI-Ir1-xl ;:,: qj1 -Hj1 ~ 2Hj 1 > 2B-J, 

and if b3n >%then, on appealing again to Theorem 7.2, we obtain 

lx-PI;:,: qj4n2b-3n_Hjl;:,: B-1-B-l > 2B-1. 

Hence any x in the complement of~ in I; satisfies lx-PI.~ 2B-1 for 
some p with degree n ~ j and with B > l£1. But the number of p with 
degree n and height b is ~ bn, and so the complement has measure 
~ ~B-lbn, where the sum is over all n, b with n ~ j and B > ~. This 
is plainly ~ Hj 2 < P;Hjl, and the required result follows. 

It will be seen that the above argument allows one to construct a 
T-number with wn taking any value ;:,: (3n)4 • This can easily be 
reduced to a bound of order n 2, but at present, apparently, not readily 
to one of order n as would be needed to fill the spectrum. 
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1. Introduction 
As remarked previously, Mahler conjectured in 1932 that almost all 
real numbers areS-numbers of type 1 and almost all complex numbers 
areS-numbers of type t. tHe originally proved that, certainly, they are 
both of type at most 4, and 4 was reduced to 3 and! in the real and 
complex cases respectively by Koksma in 1939. LeVeque improved 
these in 1953 to 2 and !, and Volkmann further reduced them in 1964 
tot and f. Moreover, proofs of Mahler's conjecture in the special cases 
with n = 2 and n = 3 were given by Kubilyus, Kasch and Volkmann. 
Finally, in 1965, Sprind.Zukt obtained a complete proof of Mahler's 
conjecture for all n, and indeed with the best possible value of w ... 

We shall establish here a refinement ofSprindZuk's result which was 
derived by the author in 1966.1 Denoting by lfr(h) a positive monotonic 
decreasing function of the integer variable h > 0 such that 'i:.lfr(h) 
converges, we prove: 

Theorem 9.1. For almost all real() and any positive integer n there 
exist only finitely many polynomials P with degree nand integer coefficients 
such that jP(O)j < (1/F(h))n, where h denotes the height of P. 

A similar result holds for almost all complex numbers (} with the 
exponent n replaced by t(n-1). It is clear from, for instance, 
Minkowski's linear forms theorem, that the assertion would not 
remain valid with 1/F(h) = 1fh, and indeed it is easily verified that 
almost no() would have the properties required in the case n = 1 if 
'i:.lfr(h) were divergent. But it seems likely that the function (1/F(h))n 
can be replaced by h-n+11fr(h), and this conjecture has in fact been 
established for n ~ 3. 

The theorem has recently been applied to evaluate the Hausdorff 
dimension of certain sets; in particular, it has been employed to show 
that, for any i\ ;;;. 1 and any positive integer n, the set of all real g such 
that, for any i\' < i\, there exist infinitely many algebraic numbers fJ. 

t M.A. 106 (1932), 131-9. 
t Bibliography; thiM oont.aina references to tho earlier works. 
t Proo. Roy . ."/()(', IAmtlon, A l9l (1966), 92-104. 
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with degree at most n satisfying 1~-PI < b-<n+l).:l.', where b denotes 
the height of p, has dimension 1/A.. This generalizes a well-known 
theorem of Jarnik and Besicovitch; and it immediately implies the 
result mentioned in the last chapter on the existence of S-numbers of 
arbitrarily large type. t 

Various avenues for further investigation are suggested by the work 
here. For instance it would be of interest to obtain results analogous 
to Theorem 9.1 for polynomials in several variables, and in fact some 
progress in this connexion, more especially for cubic polynomials in 
two unknowns, has been made by R. Slesoraitene.: In another direc
tion, it follows from Theorem 9.1, by a classical transference principle, 
that, for any e > 0 and any positive integer n, there exist, for almost 
all real 8, only finitely many positive integers q such that 

max llq8ill < q-(1/n)-e (1 ::::; j ~ n), 

and this raises the problem of confirming the stronger proposition in 
which the above inequality is replaced by 

ql+e llq8ll···lki8nll < 1, 

where the notation is that of Theorem 7.1. The problem seems quite 
difficult. 

2. Zeros of polynomials 

We record here, for later reference, some simple inequalities con
cerning the distances between the zeros of polynomials. Let P(x) be a 
polynomial with degree n and distinct zeros K 1, ••• , Kn- We note first 
that if 8 is any real number with I8-K11 ~ I8-K11 for allj then 

IP(8)1 ~ 2-niP'(Kl)II8-Kll• (1) 

where P' denotes the derivative of P. For clearly IK1 -Kil ::::; 2I8-K11, 
and we have 

where a denotes the leading coefficient of P. Similarly we obtain 

IP(8)\ IK1-K2I ~ 2-:-niP'(Kl)II8-Kll2. (2) 

Further we observe that if I8-K11 ::::; IK1-K11 for all j ~ 2 then 
18-Kil ::::; 2IK1 -K11 and so 

IP(8)\::::; 2niP'(Kl)i 18-Kll· (3) 

t Proc. London Math. Soc. 21 (1970), 1-11 (A. Baker and W. M. Schmidt). 
~ See various papers in Litovak. Mat. Sb. since 1969; see also Sprindzuk's address in 

Actea, Oongrea intemational math. ( 1970). 
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Now suppose that P(x), Q(x) are polynomials with integer coeffi
cients and degree n ~ 2; let their leading coefficients be a, b and their 
zeros be K1, ... , Kn and A1, ••• , An respectively, all of which are supposed 
to be distinct and have absolute values at most K. We shall write, for 
brevity, 

and we shall denote by q the analogous function of Q. Our purpose is 
to prove that if JK1- K2J ~ JK1- K1J for all j ~ 2, if h- K2J <p-i, and 
if also the analogous inequalities hold for Q, then 

(4) 

where the implied constant depends only on nand K. 
For the proof, we suppose that ( 4) does not hold and we shall obtain 

a contradiction if the implied constant is sufficiently large. First we 
observe that JK1- K1J ~ p-i for all j ~ 3. This is a consequence of the 
fact that the discriminant of P, namely 

a2n-2n (Kt-Ki)2, 
i<j 

has absolute value at least 1; for, in view of the inequality JKi -K11 ~ 1 
valid for all i, j, it follows that 

J(Kl-K2)(K2-Kj)l ~p-l (j ~ 3), 

and, by hypothesis, we have 

JK2-K1J ~ 2JK1-K11 and JK1-K2J <p-!. 

Hence, from the converse of (4), we obtain JK1- K11 ~ JK1- A1J and so 

JKJ-A11 ~ JKi-K11 + IK1-A1J ~ JKJ-K11 

for all j ~ 3. This gives 

(5) 

and, plainly, an analogous inequality holds for Q. 
We now use the fact that the absolute value of the resultant of P 

and Q, namely JabJniTJKi-A1J, is at least 1. Since JKi-A1J ~ 1 this 

gives JabJn-1JP(A1) Q(K1) (K2- A2) (K1- Al)-11 ~ 1 

and so, from (5) n.nd its analogue for Q, we obtain 

J(K1 -A1 ) (K1 -A1)(K2-A1 ) (K1 -A2)J ~ (pq)-1. (6) 

Further, by th(l conwrKtl of (4) tmd the hypothcsiH jK.- K2 J ~ p-6 we 
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have IK2 -A11 ~p-! and similarly IK1 -A21 ~ q-!. Furthermore we 
see that I 1 _,--,\ IK2 -A21 ~ IK2 -K1 + IK1 -A21 ~ max{p-JJ,'l •). 

But this together with (6) implies the validity of (4), contrary to 
supposition. The contradiction proves the assertion. 

3. Null sets 

Let now 1fr be any function as in § 1 and, for any positive integer n and 
any real 8, let f?JJ(n, Jjr, 8) be the set of all polynomials P satisfying the 
hypotheses of Theorem 9 .1. The theorem asserts that the set &I( n, 1fr) 
of all 8 for which f?JJ(n, Jjr, 8) contains infinitely many elements has 
measure zero. We shall show here that it suffices to establish the 
following modified result. 

The set 9'(n, 1/F) of all 8 for which f?JJ(n, 1fr, 8) contains infinitely many 
polynomials P that are (i) irreducible and (ii) have leading coefficients 
which exceed the absolute values of the remaining coefficients, has measure 
zero. 

We begin by observing that, for any 8 in &l(n, lfr), there exists, by 
Lemma 1 of Chapter 8, an integer j with 0 ~ j ~ n such that infinitely 
many polynomials Pin f?JJ(n,1fr,8) satisfy IP(j)l ~ h; and by taking 
-Pin place of P if necessary we can suppose that P(j) > 0. It clearly 
suffices to show that the set of 8 in &l(n, 1/F) which corresponds to a 
fixed integer j has measure zero, and this is equivalent to proving that 
the translate, consisting of all numbers g = 8-j, has measure zero. 
Now g satisfies IP(g +j)l < (1/F(h))n for all Pin f?/J(n, lfr, 8), and P(x+ j) 
is a polynomial in x with height at most Oh for some 0 depending only 
on n. Further, there is a positive monotonic decreasing function o-(h) 
such that l:o-(h) converges, o-(h) ~ lfr(h) and o-(h)fo-(Oh) ~ 202; indeed 
one can take o-( 1) = 21/r( 1) and 

h 
h(h-1)o-(h) = I: (2k-2)1fr(k) (h ~ 2), 

k=ll 
n n m 

whence !; o-(h) = 2n-1!; !; lfr(h), 
'h=l m=l'h=l 

and so ~o-(h) = 2l:1fr(h). Hence g is an element of &l(n,p), where 
p = 202o-, and infinitely many polynomials P in f?/J(n, p, ;) have 
constant coefficients exceeding ch for some c > 0, depending only on n. 
For any such P, the polynomial Q(x) = xn P( 1/x) has leading coefficient 
exceeding ch and hence R(x) = Q(c-1x) satisfies (ii), assuming that 
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c < 1. Moreover, R(x) has height at most c-nh, and also integer coeffi
cients if c-1 is an integer. Furthermore, for any positive integer k and 
any gas above with lgl > k-I, the number 'f/ = cg-1 satisfies 

It is plainly enough to prove that the set of all such 'fj has measure zero; 
for given a covering of the 'f/'S by intervals 11,12, ... , we obtain a 
covering 1i_, 1~, ... of the g's, where 1j consists of all cx-1 with x in~ and 
with lxl > k-I, and clearly we have l1jl ::::; k2 IJjl. Thus, on utilizing 
again the above construction of u, we see that it is necessary now only 
to show that the set ff(n, lfr) of all 0 for which f!IJ(n, tfr, 0) contains 
infinitely many polynomials which satisfy (ii) but not necessarily (i), 
has measure zero. 

Here we use induction. Clearly the sets 9'(1, lfr) and ff(l, lfr) are 
identical and so the required result holds for n = 1. We assume that, 
for any lfr, the sets &l(m, lfr) with m < n are null and that also 9'(n, lfr) 
is null, and we proceed to prove that then each !T(n, lfr) is null. For 
every 0 in !T(n, lfr), infinitely many Pin f!IJ(n, tfr, 0) satisfy (ii), and if 
infinitely many of these were irreducible then 0 would be in 9'(n, lfr) 
and the required result would follow. Hence we shall suppose that all 
the P are reducible. Then each contains as a factor n.t least one 
polynomial Q with integer coefficients and degree m < n satisfying 
IQ(O)I < (lfr(h))n; further, infinitely many of the P correspond to a 
fixed integer m and, unless 0 is algebraic, there will be infinitely many 
distinct polynomials among the associated Q. Now appealing to 
Lemma 2 of Chapter 8 and employing for a third time an averaging 
construction as above, we conclude that a function rp exists such that 
every 0 in !T(n, lfr) is in one at least of the sets &l(m, rp) with m < n. 
Each of these is null by the inductive hypothesisandsoff(n, lfr) is null, 
as required. 

4. Intersections of intervals 

We establish here a further simple. measure-theoretical result needed 
for the proof of Theorem 9.1. 

For each positive integer h, let 'P/(h) be a finite set of real closed 
intervals, and letf""(h) ben. subset of 'PI( h) such that for each lin f"" (h) 
there is a J =t= lin 'PI(h) with II n Jl ~ llll. Further let W and w be the 
set of points contained in infinitely many V(h) and in infinitely many 
v(h) respectively, whllre V(h.) iH the union of the points of the intervals 
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I of f""(h), and v(h) is that of the intervals In J with I in f""(h) and 
J =!= I in IP/( h). Our purpose is to prove that if w is null then so also is W. 
We have 

W= n u v(h), 
l~m<co h~m 

and thus, if w is null, then, for any e > 0, there is an integer m such 
that, for all n ~ m, the union of the v(h), taken over all h with 
m ~ h ~ n, has measure at most e. Now this union consists of a finite 
set of disjoint intervals and, by the definition of "Y, we see that the 
set obtained on expanding each of these intervals symmetrically about 
its centre to three times its length will cover all the V(h) taken over 
the same range of h. Thus, for every n ~ m, the latter set has measure 
at most 3e, and, on noting that W can be expanded like w above with 
V in place of v, the assertion follows. 

5. Proof of main theorem 
By virtue of§ 3, it suffices to show that every set9'(n, lfr) has measure 
zero. It is easily verified that 9'(1, lfr) is null and we shall assume that 
f/'(m, lfr) is null for m < n; we proceed to establish the result for 
m = n ~ 2. 

Let ~(n, h) be the set of all polynomials with degree n, integer 
coefficients and height h satisfying (i) and (ii) of § 3. Further let 
K1, ... , Kn be the zeros of any element P of .Pl(n, h), and let 

where the minimum is taken over all i =!= j. By (i) we have r 1 > 0 and 
from (ii) we obtain IK11 ~ n, since clearly 

IP(x) -hxnl ~ nhmax (1, lxln-1). 

Suppose now that lfr is any function as in§ 1, let 

Vi= 2niP'(Ki)l-1(lfr(h))n (1 ~j ~ n), 

and let ~ = ~(P) be the interval (possibly empty) formed by the 
intersection of the real axis with the closed disc in the complex plane 
with centre K1 and radius 

flJ = min{v1, (r1v1)i}. 

From (1) and (2) we see that every element of 9'(n, lfr) is contained in 
infinitely many ~(h) for some j, where ~(h) denotes the set of all 
I1(P) asP runs through the elements of .Pl(n, h). We proceed to prove 
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that the set of points contained in infinitely many ,A(h) has measure 
zero; the proof when j > 1 is similar and this will therefore suffice to 
establish the theorem. There is now no loss of generality in assuming 
that the zeros of Pare so ordered that r 1 = IK1 -K21. 

We divide the polynomials Pin ~(n, h) into two disjoint classes, 
placing Pin d(n, h) if r 1 ~p-i and in f!l(n, h) otherwise, where pis 
defined as in § 2, with a = h. We denote by f(h) and !£'(h) the union 
of all I 1(P) as P runs through the elements of .9/(n, h) and f!l(n, h) 
respectively. Then clearly the union of f(h) and !£'(h) is just / 1(h) 
and it suffices to prove that the set f of points contained in infinitely 
many f(h) and likewise the set.!£' of points contained in infinitely 
many !e(h) have measure zero. 

We prove first that f is null. Since lfr(h) is positive monotonic 
decreasing and l:lfr(h) converges, we have htfr(h)-+ 0 ash-+ CXJ and so 
there is no loss of generality in assuming that lfr(h) < h-1 for all h. 
For each Pin d(n, h), let I= I(P) be the interval formed by the 
intersection of the real axis with the closed disc in the complex plane 
with centre K1 and radius (t/f(h))-1 fl1. Clearly I1 c I and II11 ::::; tjf(h) III. 
We denote by Oft(h) the set of all I(P) and by "Y(h) the maximal subset 
of Oli(h) possessing the property specified in § 4. Retaining the notation 
of that section, we proceed now to show that w is null. First we observe 
that every() in I(P) satisfies 

I8-K11 ::::; (t/f(h))-1 V1::::; h-n+liP'(Kl)l-1 = I(Kl-K2)PI-I, (7) 

provided that his sufficiently large; and the number on the right is at 
most I K1 - K21 by the definition of d( n, h). Hence (3) holds and so 

IP(8)1 ::::; 2n IP'(K1)1 (t/J'(h))-1 v1 = 22n(tjf(h))n-1. 

Now if() were also a point of I(Q) for some Q =t= Pin d(n, h) then the 
polynomialR = P-Q would satisfy IR(8)1 ::::; 22n+l(t/J'(h))n-1. Further, 
from (ii), we see that R has degree at most n- 1 and height at most 2h. 
But, for every() in w, there exist infinitely many distinct R with these 
properties and thus, on appealing again to the construction in § 3, it 
follows that w is contained in the union of sets &l(m, rp) for a suitable 
function rp, where 1 ~ m < n. Our inductive hypothesis together with 
the result of § 3 shows that 81.( m, rp) is null for each m, and hence w is 
null, as required. 

We conclude from § 4 that W is null and thus to complete the proof 
that f is null it iR ncc<lKRnry only to verify th11t the set of points in 
infinitely mnny .~(h), with tho11t1 /1(1') t'xcludtld for which the corre-
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sponding I is in "f/"(h), has measure zero. Now if J(P) and /(Q) are 
distinct elements not contained in "f/"(h) then 

!I(P) n I(Q)I <!min (II(P)I, !I(Q)!). 

This implies, as one readily verifies, that no point can be contained in 
three distinct intervals l(P) not in "Y(h). Further, all J(P) are included 
in [- 3n, 3n], for we have !K11 ~ nand, as above, 18- K1 1 .;;; r 1 for every 
8 in J(P). Hence the total length of all J(P) not in "f/"(h) is at most 12n. 
The corresponding J1(P) have therefore total length at most 12n1fr(h), 
and that .Yf' is null follows immediately since '2:.1/F(h) converges. 

It remains to prove that !l' is null. For each positive integer k, let 
fif(n, k) be the union of the sets &l(n, h) with 4k-l .;;; h < 4k, and, for 
each integer l, let fif(n, k, l) be the subset of ~(n, k) consisting of all 
polynomials Pwith 41- 1 .;;; p < 41• Then, by (7), for each Pin ~(n, k, l), 
J1(P) has length at most 

2fl1 .;;; 2hv1)i ~ (4-l+11fr(4k-1))! ~ 2-l-k, 

where the implied constants depend only on n. Further, if J1(P) is not 
empty then the imaginary part of K1 is at most p 1. It follows from (4), 
on applying a simple box argument to the interval [ -n,n], that, if 
k ~ 1, then the number of polynomials Pin fif(n, k, l) for which J1(P) is 
not empty is ~ 21 + 1. Hence the total length of all J1(P) with P in 
~(n, k, l) is ~ 2-k(2-1 + 1). But from the estimates in§ 2 relating to the 
discriminant of P we see that p ~ 1, and clearly alsop~ 4nk. Thus, 
for any n and k, the number of non-empty sets ~(n, k, l) is ~ k, and, 
for such sets, we have 2-1 ~ 1. We conclude that the total length of all 
J1(P) with Pin ~(n, k) is ~ k2-k, and that .Pis null follows from the 
convergence of "i:.k2-k. This completes the proof of the theorem. 



10 

THE EXPONENTIAL FUNCTION 

1. Introduction 

In a classic memoir of 1899, Borelt obtained a refinement of Hermite's 
theorem on the exponential function and thereby established the first 
measure of transcendence for e. He proved that, for any positive 
integer n, there are only finitely many polynomials P with integer 
coefficients and degree n satisfying jP(e)l < h--¢<h>, where h denotes the 
height of P and ¢(h) = clog log h for some c = c(n) > 0. Borel's result 
was much improved by Popken~ in 1929; Popken showed that ¢(h) 
can be replaced by n + e(h), where e(h) = cjlog log h with c = c(n) > 0, 
and this plainly implies that e is an S-number of type 1. Mahler§ later 
derived an explicit expression for c of the form c'n2 log (n + 1), where 
now c' is absolute. 

In 1965, a generalization of Popken's result similar to Theorem 7.1 
was established by the author, 11 and this will be the subject of the 
present chapter. 

Theorem 10.1. For any distinct, non-zero rationals Ov ... , On and 
any e > 0 there are only finitely many positive integers q such that 

ql+• jjqe01 ll ... jjqeOnjj < 1. 

The theorem plainly yields all the corollaries recorded after Theorem 
7.1 with a 1, ... , an replaced by e0

1, ... , e0n, and indeed Theorem 7.2 holds 
with a replaced by e0 for any non-zero rational 0. Furthermore, in 
contrast to the work of Chapter 7, the arguments here enable one to 
replace e by a function e(q) tending to 0 as q ~ oo, namely c(log log q)-l 
where again c = c(n) > 0. 

The proof of the theorem involves techniques similar to those intro
duced by Siegel in his studies on the Bessel functions, which will be 
discussed in the next chapter. In particular, Dirichlet's box principle 
will be employed to construct certain linear forms in e01x, ••• , e0nx with 
polynomial coefficients that vanish to a high order at the origin. Linear 
forms of this kind occurred in the works of Popken and Mahler, but 

t C.R. US (1899), 1196-9. ~ M.Z. l9 (1929), li211-41. 
§ J.M. 166 (1932), liM 1\0. II Ct~M<lian .1. MrJth 17 (11l61'i), 616-26. 

II I 103 I 11'1' N 
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there they were derived explicitly by means of analytic integrals. 
Clearly Theorem 10.1 improves upon the Popken-Mahler theorem 
except when the polynomial P has coefficients that are, in absolute 
value, nearly all equal, and then the earlier work is slightly stronger 
in view of the more rapidly decreasing function e. Feldman t has 
shown that the techniques used here furnish a function e(q) of order 
(log log q)-1 for certain series closely related to the exponential 
function. 

The arguments of this chapter do not extend easily to furnish 
Theorem 10.1 for algebraic 01, ... , ()n· Some results in this context were 
obtained in the original paper of Mahler, but they would seem to be 
far from best possible. In fact, even in the most precise analogue of 
Theorem 7.2 established to date, taking a= e0 with() algebraic, the 
exponent of B tends rapidly to -oo as the degree of () increases.t 
Nevertheless, a construction similar to that employed in § 2 below 
yields at once a negative answer to the power series analogue of a 
well-known problem of Littlewood. Littlewood asked whether, for 
any real 0, ¢ and any e > 0, there exists a positive integer q such that 

q ffqO[[[[q¢[[ < e; 

the series()= e11x, ¢ = e21xprovide a counter-example to the analogue,§ 
but the problem itself remains unsolved. And the latter recalls to mind 
another outstanding question in Diophantine approximation, namely 
whether every continued fraction with unbounded partial quotients is 
necessarily transcendental; this too seems very difficult. 

2. Fundamental polynomials 
We suppose that 011 ... , On are distinct rationals and that 0 < e < 1. 
Constants implied by ~ or ~ will depend on these quantities only. 
As before, whenever we speak of the height of a polynomial it will be 
understood that its coefficients are integers. We shall denote by fW 
thejth derivative of a function/, or f' in the case of the first derivative. 

Lemma 1. For any positive integers r 1, ... , rn with maximum r ~ 1, 
there exist polynomials ~(x) (1 ~ i ~ n), not all identically 0, with 
degrees at most r and heights at most ri! r"", such that J1i> (0) = 0 for 

t V.M. 2 (1967), 63-72. 
t Cf. Ann. Univ. Sci. Budapest, 9 (1966), 3-14 (Luise-Cha.rlotte Kappa). 
§ Michigan Math. J. II (1964), 247-110. 
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j<r-ri,and 
n "" l: ~(x)eOtx = l: Pmxm, (1) 

i=l m=M 

where !Pml < (r!fm!) r6(r+m> and 

M = r1 + ... +rn+n-1-[er]. 

Proof. Let L be the maximum of the absolute values of 01, ..• ,()nand 
let l be the least common multiple of their denominators. We take Pii 
to be 0 for all integers i, j other than the N = r1 + ... + r n + n pairs 
given by 1 ::::;; i ::::;; n and r- ri ::::;; j ::::;; r, and we then define Pii for these 
remaining values as integers, not all 0, satisfying 

n m(m) . l; l; . 0?['-1[mpii = 0 (0 ::::;; m < M). 
i=l i=O J 

(2) 

Such integers exist by virtue of Lemma 1 of Chapter 2, and indeed 
they can be selected to have absolute values at most 

H = {N(2lL)M}MICN-M>. 

We proceed to prove that the polynomials 
r 

~(x) = r! ~ Pij(j!)-1 xi (1 ::::;; i::::;; n) 
j=O 

have the required properties. 
First we observe that, on expanding e0tx as a power series in x, we 

obtain 
n "" l; Pi(x)eOix = r! l; um(m!)-lxm, 

i=l m=O 

where, for each m, zmu m is given by the left-hand side of (2). Hence ( 1) 
holds with Pm = (r!fm!) O"m. Further we have M < N < 2nr and 
N- M > er, whence 

H < {2nr(2lL)2nr}2nfe < rler. 

Since Pii = 0 for j < r- r i it follows that the coefficients of the ~(x) 
have absolute values at most 

r!H - IH(r) I er 
( ) 1

-ri. ::::;;ri.r. 
r-ri . ri 

Also it is clear that 

luml < n(m+ 1}(2lL)m H < r<r+m>, 

and this proves the lemma. 

Lemma 2. Let ~1(x) ( t ::::;; i ~ n,j ;:3: 1) be dPfined recursively by 

/~ 1 (x},.. /~(x), 1~. 111 (x)"" P;1(.r) +O,Jj1(x). 
8-:z 



106 THE EXPONENTIAL FUNCTION 

lfri > 2s for all i, where s = [er] + (n-1)2, then the determinant a(x) of 
order n with ~1(x) in the ith row and jth column cannot have a zero at x = 1 
with order greater than s. 

Proof. We shall show in amomentthatnoneofthe~(x) is identically 0; 
at first we assume this. Then each~ has a non-zero leading coefficient 
Pi say. Since clearly ~1(x) has degree at most rand leading coefficient 
piO~-t, it follows that a(x) is a polynomial with degree at most nr and 
with leading coefficient p 1 ••• Pn 1/f, where 1/f is a Vandermonde deter
minant of order n formed from the powers of the Oi. By hypothesis, the 
oi are distinct and so a(x) is not identically 0. 

We suppose now, as we may without loss of generality, that r = r 1• 

Denoting the left-hand side of (1) by cl>(x), we clearly have 

n 
cf><i-1>(x) = ~ ~1(x) eOiz. 

i=l . 

Hence a( x) remains unaltered if the first row is replaced by e-Dx zc~><i-1>( x) 
withj = 1, 2, ... , n. On differentiating (1), we see that cf><i>(x) has a zero 
at x = 0 with order at least M- j; and clearly ~1(x) has a zero at x = 0 
with order at least r-ri-j + 1. Hence a(x) has a zero at x = 0 with 
order at least n 

M -n+ 1 + l: (r-ri-n+ 1) = nr-s, 
i=2 

and the lemma follows since a(x) has degree at most nr. 
It remains only to prove the original supposition. We suppose that 

exactly k of the polynomials ~(x) do not vanish identically and, 
without loss of generality, that these are given by i = 1, 2, ... , k. Also 
we assume, as clearly we may, that r = ri for some i with k ~ i ~ n. 
Now, as above, we see that the minor in a(x) formed from the first 
k rows and columns is a polynomial, not identically 0, with degree at 
most kr. On the other hand, on taking a linear combination of rows, it 
is clear that it has a zero at x = 0 with order at least 

k-1 n 
M-k+1+ l: (r-ri-k+1);:;:. (k-1)r-s+ l: ri. 

i=l i=k 

By virtue of the hypothesis r i > 2s for all i, it follows that k = n, and 
this completes the proof of t~e lemma. 

Lemma 3. There are n distinct suffixes J(j) (1 ~ j ~ n) between 1 and 
n + s inclusive such that the determinant of order n with~. JCJ> (x) in the 
ith row and jth column does not vanish at x = 1. 
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Proof. We introduce linear forms in w1, ••• , wn by the equations 
n 

Uj = ~ ~1(x)wi (j = 1, 2, ... ). (3) 
i=l 

If ai;(x) is the minor in a(x) formed by omitting the ith row andjth 
column then 

n 
wia(x) = ~ ( -1)i+il-Jja11(x) (1 ~ i ~ n). 

j=l 
(4) 

By Lemma 2, there is an integer t ~ s such that a<t>( 1) =l= 0 and we 
suppose that tis the least such non-negative integer. Now regarding 
the w1 as differentiable functions of x and differentiating (4) t times, 
replacing the wi occurring at each stage by wlJi (as we may since the 
resulting equations hold identically in the wi and wi) we obtain 

{ 
t ( t) t-. } n+l . wi ~. . ()i 1 a(j) (x) = ~ TJjJi;(x) (1 ~ ~ ~ n}, 

i=O J i=l 

where the ~;(x) are polynomials given by linear combinations of the 
ai1(x) and their derivatives. Hence the linear fonns defined by (3) 
with x = 1 and with 1 ~ j ~ n + t, include a set of n linearly inde
pendent forms, and the lemma follows with J(j) (1 ~ j ~ n) given by 
the associated suffixes. 

Lemma 4. There are integers qii (1 ~ i,j ~ n),forming a non-zero 
determinant, such that !qiil < ri!r4.,. and 

I :i qiieO;l < r!r4enr ( .TI ri!)-i. (5) 
i=l ~=1 

Proof. In fact the integers qii = zn+a~.J<J>(1) have the required pro
perties. Indeed the first assertion follows from Lemma 3 and the 
second from the obvious upper estimate ri! (r+L)i r.,. for the absolute 
values of the coefficients of~;· Further, with the notation of Lemma 2, 
the sum on the left of ( 5) is given by zn+s<J>J<iH( 1 ), and, on differ
entiating (1) h ~ n+s-1 times, we obtain 

00 

I<I><h>(1)1 < rtr.,. ~ rm((m-h)t)-1. 
m-M 

But the sum on the right multiplied by (M .:..h) I is clearly at most 
erreM, and we have 

(M-h)l ;iii: (r1 + ... +r,.-28)1 ;iii: (nr)-18 (r1 + ... +rn)!. 

Since M ~lnr and 8 ~fer, t.his gives (o). 
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3. Proof of main theorem 
The proof can now be completed readily by means of the Geometry of 
Numbers. t Let ()t, ... , ()n be distinct non-zero rationals and suppose 
that 6 > 0. Constants implied by ~ or }> will depend on these 
quantities only. For brevity we put k = n+ 1, and we signify by Ak 
the vector (eo•, ... , e0n, 1) in Rk. Further we signify by A1 (1 ~ j ~ n) 
thejth row of the unit matrix of order k. We proceed to show that, for 
any numbers p,1, .. . ,fok with fot ... fok = 1 and fo; > 1 (1 ~ j < k), the 
first minimum At of the parallelepiped !Aixl < Jt; (1 ~ j ~ k) exceeds 
p,-f. if#; ~ p, for all j and p, }> 1. 

In fact it suffices to show that the last minimum i\k of the parallel
epiped is ~ p,~tn, for we have i\1 ... Ak }> 1 and so At}> Ak"n· We shall 
apply Lemma 4 with n replaced by k and with ()k = 0. We taker = rk 

to be the least positive integer for which p, < r! r-4"", and we then take 
r 11 ... , r n to be the integers satisfying 

(r1-1)! ~ p,1r4.,. < r1!. 

Clearly r is the maximum of r 11 ... , rk and we haver}> 1 and ri > 4er 

for all i; in particular, the hypothesis of Lemma 2 is satisfied. Further, 
from Stirling's formula we see that 

p, > (r-t)!r-4"" > rlt', 
and so, by Lemma 4, 

iqiii < JtirSer+l < #i#20e. 

Further, the right-hand side of (5) is at most 

r4er(p,t .•• #n)-1 ~ #k#20e, 

and since the determinant of the qii is not 0, it follows that Ak ~ p,206• 

This gives At > p,-~ if e is sufficiently small, as required. 
Finally, we apply Lemma 8 of Chapter 7 with l = n = k- 1. 

Denoting by a1 (1 ~ j ~ k) the vectors defined at the beginning of§ 10 
of Chapter 7 with e0J in place of ai, we conclude that the first minimum 
v1 of the parallelepiped I a1xl < p,jt (1 ~ j ~ k) satisfies 

vt }> A1 · .. A1 ?: Ai 

and so vt }> p,-1€, Hence the main proposition of § 10 holds, and 
Theorem 10.1 now follows by the argument immediately succeeding. 

t For an alternative argument see the author's meruoir in Canadian J. Math. 17 
(1965). 



11 
THE SIEGEL-SHIDLOVSKY 

THEOREMS 

1. Introduction 
In 1929 Siegelt obtained a general method for establishing the 
algebraic independence of the values of a certain class of power series 
satisfying systems of linear differential equations. Siegel called the 
power series in question E-functions. By this he meant series of the 
form 

with a0, a1, ... elements of an algebraic number field such that, for 
some sequence b0 , bv . . . of positive integers and for any e > 0, 
bna0 , ... , bnan and bn are all algebraic integers with size ~ nen, where 
the implied constant depends only one; here the size denotes, as in 
Chapter 4, the maximum of the absolute values of the conjugates. 
It is clear that the exponential function is an E-function, and indeed 
so is the normalized Bessel function 

_ .l -.\ _ rJ:> (-1)n(!x)2n 
K;~.(x)- r(i\+1}( 2 x) J,\(x)- n~on!(i\+ 1 ) ... (i\+n) 

for all rational values of i\ other than the negative integers. More 
generally, any hypergeometric function 

~ [a1 , n] ... [a1, n] xkn 

n=O [flv n] ... [flmo n] 

is an E-function, where k = m -l > 0, 

[y, n] = y(y+ 1} ... (y+n-1}, 

and t]:J.e a's and fl's are rationals other than negative integers. The 
latter assertion follows in fact from the observation that, for any 
rational a= pfq, the integer qn[a, n] divides n! v, where v denotes the 
least common multiple of all the positive integers up to 

m = <IPI + lql)n; 

and from the prime-number theorem we have v <em for some absolute 

t AM•. l'rr"""· AA·ml. Wi""· 11121l, Nu. I. 

I lOIII 
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constant c. Furthermore, it is readily verified that sums, products, 
derivatives and integrals of E-functions are again E-functions. 

Siegel's work related to differential equations of the first and second 
orders only, and it was an outstanding question for many years to 
devise a means of extending the arguments to higher order equations. 
The problem was solved by Shidlovskyt in 1954 and many notable 
applications have followed.* The basic result concerns E-functions 
E 1(x), ... , En(x) satisfying a system of homogeneous linear differential 
equations n 

y~ = ~ f~,1 (x)y1 (1 ~ i ~ n), (1) 
J=l 

where the fii are rational functions of x, and the coefficients of all the 
E's andf's are supposed to be elements of an algebraic number field K. 
We have then 

Theorem 11.1. If E1(x), ... , En(x) are algebraically independent 
over K(x) then, for any non-zero algebraic number a distinct from the 
poles ofthefi1,E1(a), ... ,En(a) are algebraically independent. 

The theorem can easily be extended to yield an assertion to the 
effect that the maximum number of algebraically independent 
elements among E 1(x), ... , En(x) is the same as that among 

E1(a), ... , En(a), 

and moreover there is no difficulty in generalizing the latter result to 
inhomogeneous equations where an additional rational function is 
present on the right of (1). As an immediate application of Theorem 
11.1, we see that if i\ is rational, but not a negative integer or half an 
odd integer, then KA(a) and K~(a) are algebraically independent for 
every non-zero algebraic number a; for it is well known§ that KA(x) 
and KA(x) are algebraically independent over Q(x). This further 
implies, for example, that the continued fraction with partial quotients 
1, 2, 3, ... is transcendental; for J0(,J(- 4x)) [ = K 0(,J(- 4x))] satisfies 
the differential equation xy" + y' = y, and the continued fraction in 
question is given by yfy' evaluated at x = 1. Oleinikov11 has obtained 
some similar theorems for third order linear differential equations; 
for instance he has shown that if 

F( ) = ~ (x/3)3n 
x n=O n! [i\,n][ft,n]' 

t l.A.N. 23 (1959), 35--66. 
t Cf. the survey of Feldman and Shidlovsky (Bibliography). 
§ Cf. Siegel (Bibliography). II D.A.N. 166 (1966), 540-3. 
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where i\, I" are rationals such that none of i\ + fl, i\- 2fl, I"- 2i\ are 
integers, then F ( x), F' ( x), F" (x) satisfy the hypothesis of Theorem 11.1, 
whence F (a), F' (a), F" (a) are algebraically independent for every non
zero algebraic number a. And Shidlovskyt has proved a striking 
theorem to the effect that if 

"" <l>k(x) = ~ xknJ(n!)k, 
n=O 

then, for any non-zero algebraic a and any r, the numbers <I>Ll)(a), with 
1 ::::;; l < k, 1 ::::;; k ::::;; r, are algebraically independent. Plainly also 
Theorem 11.1 includes Lindemann's theorem. 

2. Basic construction 

The proof of Theorem 11.1 follows closely the arguments of the 
preceding chapter, but it is no longer a simple matter to confirm that 
a( x) does not vanish identically. The verification, which is Shidlovsky' s 
major discovery in the subject, will be given in Lemma 2 below. 

We shall signify by E 1(x), ... , En(x) E-functions as above, linearly 
independent over K(x) and we shall suppose that 0 < e < 1. Constants 
implied by ~ or }> will depend on the coefficients in the E's,f's and 
on e only. By f(x) we signify a polynomial, not identically 0, with 
coefficients inK, such thatffii is a polynomial for allfii in (1). 

Lemma 1. For any integer r }> 1, there are polynomials 

~(x) (1 ::::;; i ::::;; n), 

not all identically 0, with degrees at most rand algebraic integer coefficients 
inK with sizes at most (r!)1+<', such that 

n "" 
~ ~(x)Ei(x) = ~ Pmxm, (2) 
i=l m=M 

where IPml < r! (m!)-l+e and 

M = n( r + 1) - 1 - [ er]. 

Prooj: Let aii be the coefficient of xifj! in Ei(x) and let bio• biv ... be the 
sequence of integers associated with Ei as in § 1. By Lemma 1 of 
Chapter 6, there exist 1~lgebraic integers PH ( 1 ::::;; i ::::;; n, 0 ::::;; j ::::;; r) inK, 

t Tnuly Mo.kov. 18 ( 1968), IJ6-64. 
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not all 0, such that 

n mln(r,m) (m) 
l: ~ · ai,m-iPii = 0 (0 ~ m < M), 
i=l i=O J 

(3) 

and indeed they can be selected to have sizes at most NltNMI<N-M>, 

where N = n(r+ 1) and o = (ef4n)2; for, on multiplying (3) by 
b1111 ••• bnm• the coefficients become algebraic integers inK with sizes 
~ 2MMi6M, as is clear on taking of(2n) in place of 6 in the defining 
property of the b's. We conclude, as in the proof of Lemma 1 of 
Chapter 10, that the polynomials 

r 
Ji(x) = rl l: p11(j!t1 xi (1 ~ i ~ n) 

j=O 

have the asserted properties. In fact (2) plainly holds with 

Pm = (r!fm!)um, 

where u111 denotes the left-hand side of (3), and since M < N < 2nr and 
N -M > er, we see that the Pii have sizes at most rl"', whence 
lcrml < (m!}E form ?: M, as required. 

Lemma 2. Let Ji1(x) (1 ~ i ~ n, j;?: 1) be defined recursively by 

Then the determinant ~(x) of order n with Ji1(x) in the ith row and jth 
column is not identically 0. 

Proof Suppose, on the contrary, that ~(x) vanishes identically. Let k 
be the integer such that the first k columns of ~(x) are linearly inde
pendent over K(x) but the (k+ 1)th column is linearly dependent on 
these. We signify by Q the matrix formed by the first k columns of 
~(x), and by Rand S the matrices formed from the first k rows of Q 
and last n- k rows respectively. We assume, as clearly we may, that 
the notation is such that R is non-singular, and we proceed to prove 
that the degrees of the numerators and denominators of the rational 
function elements of SR-1 are ~ 1, where in fact the implied constant 
depends only on the f's. This will suffice to establish the lemma; for 
denoting by L the row vector with jth element 

n 
L1 = l; 1i1Ei (1 ~j ~ k), 

i=l 
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and putting A= (E1, ... ,Ek), B = (Ek+I• ... ,En), 

we have L = AR+ BS whence 

LR-1 = A+BSR-1. (4) 

But L1 satisfies the differential equation Li+1 = JLj and so each element 
ofL has a zero at x = 0 with order at least M- n. Further, each element 
ofR - 1 can be expressed as a rational function inK (x) with denominator 
det R, and since the latter is a polynomial with degree at most kr + c, 
where c ~ 1, it follows that each element of LR-1 has a zero at x = 0 
with order at least M- kr- n- c. On the other hand, the vector on the 
right of (4) cannot vanish identically in view of the assumed linear 
independence of E 1, ... , En, and the order of the zeros of its elements 
at x = 0, if any, are bounded independently of the coefficients of the 
elements of SR-I, and so, in particular, of r. Now k < n, and so M- kr 
tends to infinity with r; hence we have a contradiction if r is suffi
ciently large. 

To prove the assertion concerning SR-I, we observe first that there 
is a square mat1;ix F of order k, with elements in K(x), such that, for 
any solution y of (1), the vector Y = yQ satisfies the differential 
equation Y' = YF. Indeed if Y1 denotes the jth element of Y, then 
Yi+1 = JYj for all j < k and, by the definition of k, f Yk is expressible 
as a linear combination ofY1, ... ,Yk with coefficients inK(x). Let now 
w 1, ... , w n be power series solutions of ( 1) linearly independent over K 
and let W be the square matrix of order n withjth row W;. Then each 
row ofWQ is a solution ofY' = YF; but this has at most k solutions 
linearly independent over K and thus there exists ann- k by n matrix 
M with coefficients in K and rank n-k satisfying MWQ = 0. 
Denoting by U and V the matrices formed from the first k columns of 
MW and the last n- k columns respectively, we have UR + VS = 0. 
Since R is non-singular and MW has rank n- k it follows that V is 
non -singular and so SR - 1 = - V - 1 U. Clearly the elements of V - 1 U are 
rational functions in the elements ofW with coefficients in K and with 
the degrees of the numerators and denominators bounded inde
pendently of r. Hence they can be expressed as quotients of linear 
forms in certain monomials in the elements ofW, linearly independent 
over K(x), the coefficients in the linear forms being rational functions 
inK (x) for which again the degrees of the numerators and denominators 
are bounded independently of r. Since the elements of SR - 1 and so also 
of V-1U are in fact in K(x), they must he given by quotients of such 
coefficients, and t,hf' nssf'rt.ion follows. 
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3. Further lemmas 

We now obtain analogues of Lemmas 3 and 4 of Chapter 10. The 
arguments here will follow closely their earlier counterparts and so we 
shall be relatively brief. 

By a we shall signify an element of K with af(a) =I= 0. By c1, c2, ... 

we denote positive numbers which may depend on a, e and the 
coefficients in theE's andf's only. 

Lemma 3. There are distinct suffixes J(j) (1 ~ j ~ n) not exceeding 
er+~ such that the determinant with ~.J<i>(x) in the ith row and jtlt 
column does not vanish at x = a. 

Proof. We begin by noting that il(x) remains unaltered if the first 
row is replaced by EJ.1 L1 withj = 1, 2, ... , n, where L1 is defined as in 
the proof of Lemma 2. Hence il(x) has a zero at x = 0 with order at 
least M- c2, and since it is a polynomial with degree at most nr + c3 , 

it follows that a non-negative integer t exists, not exceeding 

nr+c3 - (M -c2) ~ er+ c4, 

such that .l<t>(a) =I= 0; we suppose that tis chosen minimally. 
We now introduce linear forms in w1, ... , wn by (3) of Chapter 10. On 

applying the operator fdfdx to ( 4) of that chapter t times, replacing 
w~ occurring at each stage by the right-hand side of (1) with y1 = w1, 

we obtain n+l 
wi(f(a))t il<t>(a) = ~ Jfj}i1(a) (1 ~ i ~ n), 

J=l 

where the Pi1 denote polynomials in x given by linear combinations of 
thef's, il's and their derivatives. Hence the linear forms 

Jfj (1 ~j ~ n+t) 

with x = a include a set of n linearly independent forms and the 
lemma follows with J(j) given by the associated suffixes. 

Lemma 4. There are algebraic integers qii (1 ~ i,j ~ n) inK with 
sizes at most (rl)1+16• forming a non-zero determinant and satisfying 

I i qiiEi(a)l < (r!)-n+I+l6m (1 ~ j ~ n). 
i=l 

(5) 

Proof. Let l be a positive integer such that la and the coefficients in 
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lf and all lffiJ are algebraic integers. We proceed to prove that the 
numbers qii = zr+<m+I>JU>~.J<i>(a) (1 ~ i,j ~ n), 

where m denotes the maximum of the degrees oftheffii andf, have the 
required properties. First it is clear that li~i has algebraic integer 
coefficients and degree at mostr + mj. Thus the q's are algebraic integers 
and, by Lemma 3, they form a non-zero determinant. Further, it is 
easily verified by induction that the sizes of the coefficients of li ~~ are 
at most (r+mj)2i c~(r!)l+•, and since the J(J") do not exceed er+c1, this 
gives the required estimate for the sizes of the q's. 

It remains to prove (5). Denoting by «l>(x) the left-hand side of (2), 
it is clear that the sum on the left of (5) is given, apart from a factor 
zr+<m+I>J, by (jdfdxV-l «<> evaluated at X= a, where J = J(j). But, 
again by induction, we see that this is a linear form in the «t><h>(a), where 
k = 0, 1, ... ,J -1, having coefficients with absolute values at most 
(c6 J)2J. Hence it suffices to prove that 

i«t><hl(a)i < (r!)-n+l+Sen (0 ~ k < J). 

Now from Lem~a 1 we obtain 
00 

i«t><hl(a)! < r! ~ (ml)•((m-k)!)-1 !a!m-h, 
m=M 

and the sum on the right is at most 
00 

k! ~ (m!)-1+e2mla!m-h ~ k!cf(M!)-1+e. 
m=M 

Since k < er+c1 and M ~ 2nr we have k! ~ (r!)3• and 

M! ~ (2nr)-er (r!)" ~ (r!)n-se. 

The required estimate follows at once. 

4. Proof of main theorem 
Suppose that E 1(a), ... , En(a) are algebraically dependent. Then they 
satisfy an equation P(E1, •.. , En) = 0, where P is a polynomial with 
algebraic coefficients, not all 0. We shall denote by c the degree of P, 
and we shall assume, as we may without loss of generality, that the 
coefficients in P are algebraic integers in K. The degree of K will be 
denoted by d, and we shall suppose that 0 < e < 1. Further we shall 
signify by m an integer such that the binomial coefficients 

k = (m+:+c), z = (m:n) 
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satisfy k -l < lf(2d); the latter inequality certainly holds for all 
sufficiently large m since k and l are asymptotic to m"fn! as m-+ oo, 
as is easily seen by expressing them as polynomials in m with degree n. 
In the sequel, constants implied by ~ or ~ will depend on a, e, m and 
the coefficients in theE's, f's and P only. 

Let now tff1, ... , tffk be the E-functions E{t ... E~n, where j 1, ... ,jn run 
through all non-negative integers with j 1 + ... +jn ~ m+c. Then 
clearly tff1, ••• , tffk satisfy a further system oflinear differential equations 
of the form (1), where the new coefficients are given by linear com
binations of the f's; furthermore, tff1, ... , tffk are linearly independent 
over K(x) by virtue of the hypothesis regarding the algebraic in
dependence of E1(x), ... , En(x). We conclude from§ 2 and§ 3that, for 
any integer r ~ 1, there exist algebraic integers qii (1 ~ i,j ~ k) in 
K possessing the properties cited in Lemma 4 with tff1, ... , tffk in place 
of E1, ... , En. For each set of non-negative integers j 1, ... ,jn with 
jl + ... +jn ~ m we write 

" E{t ... E~ P(E1, • .. , En) = "}:. Pi;tffi, 
i=l 

where the Pi; are either coefficients in P or 0, andj = j(j1, ... ,jn) takes 
the values 1, 2, ... , l. Then on the right we have l linear forms in 
rff1, .•• , tffk linearly independent over K, all of which vanish at x =a. 
Since the determinant of the qii is not 0, it follows that there exist k -l 
of the forms k 

ct>, = 'f. qiitffi ( 1 ~ j ~ k), 
i=I 

which together with the latter make up a linearly independent set; 
without loss of generality we can suppose that they are given by 
cl>l+l• ... , cl>k. We shall suppose also, as clearly we may, that tff1(a) =1= 0. 

We now compare estimates for the determinant D of order k with 
Pii in the ith row and jth column for j ~ l and qii in that position for 
j > l. Plainly Dis a non-zero algebraic integer inK, and, since Pii ~ 1, 
it has size ~ (r!)Cl+16•Hk-ll; hence 

IDI ~ (r !)-(l+I6e)(k-l)d ~ (r!)-(1+16e)l/2, 

On the other hand, D is unaltered if the first row is replaced by 0 
for j ~ land by tff11(a) ct>1 for j > l. Further, by Lemma 4, the latter 
elements are ~ (r!)-k+l+16•k; thus 

IDI ~ (r!)(l+16e)(k-l-l)-k+l+l6ek ~ (r!)-1+32ek. 

But k < fl and so, if e < rh and r is sufficiently large, we have a con
tradiction. This proves the theorem. 
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Subsequent to the fundamental discovery of Shidlovsky, researches 
in this field have largely centred on establishing the function-theoretic 
hypotheses of Theorem 11.1 and its extensions for particular classes of 
E -functions, and, as indicated in § 1, this has in fact been accomplished 
in many striking cases. Studies have also been carried out in connexion 
with obtaining positive lower bounds for expressions of the type 
P(E11 ••• , En) as above, and in fact an estimate of the form Oh-c has 
been established, where h denotes the maximum of the sizes of the 
coefficients of P and 0, c are positive numbers which do not depend 
on h; but c here increases rapidly with n. t The main outstanding 
problem in the subject is to generalize the theory to wider classes of 
analytic functions than E-functions, and any progress here would be 
of much interest. 

t Cf. Lang (Bibliography, first work). 
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1. Introduction 
Few theorems have been established to date on algebraic, as opposed 
to linear, independence of transcendental num hers. Indeed, apart from 
the results onE-functions discussed in the last chapter, which in fact 
follow at once from their linear analogues, and the examples men
tioned in Chapter 8 that arise from the properties of Mahler's classi
fication, the only work in this context of a general nature is based on 
studies of Gelfondt carried out in 1949. Recently a number of authors 
have obtained important improvements in this connexion, and these 
latest developments will be the theme of the present chapter. 

The essential character of the results is well-illustrated by: 

Theorem 12.1. If both 6u 62, 63 and 'f/1 , 'f/2 , rJ3 are linearly inde
pendent over the rationals, then two at least of the numbers 

gi, e€flli (1 ~ i,j ~ 3) 

are algebraically independent. 
Gelfond proved the theorem originally subject to certain supple

mentary conditions, and the formulation here is due to Tijdeman. t 
As an immediate consequence one sees that if a is an algebraic number 
other than 0 or 1 andflisa cubic irrational then a!, aJJ2 are algebraically 
independent; this follows in fact on taking g1 = pi-1 and 'YJJ = 61loga. 
Tijdeman also derived two variants of Theorem 12.1; he proved that if 
61, 62, 63, 64 and 'Yj1, 'f/2 are linearly independent over the rationals, then 
two at least of Si• e€;~; are algebraically independent, and moreover 
that if 61, 62, 63 and 'f/1 , 'f/2 are linearly independent over the rationals, 
then two at least of gi, 'YJ;, e€n; are algebraically independent. These 
results include some earlier theorems of ~melev.§ 

Very recently, Brownawell11 and Waldschmidt~ succeeded inde
pendently in obtaining a new version of the latter result which sufficed 
to solve a well-known problem of Schneider. They proved: 

t Bibliography t l.M. 33 (1971), 146-62. 
§Mat. Zametlci, 3 (1968), 51-8; 4 (1968), 525-32. 
II J. Number Th. 6 (1974), 11-31. ~ J. Number Th. 5 (1973), 191-202. 
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Theorem 12.2. If both ~v ~2 and 'YJv 'Yj 2 are linearly independent over 
the rationals and if efot1Jz and ef.•"• are algebraic, then two at least of Si• rJ 1, efoi1Ji 

are algebraically independent. 

This implies, more especially, that if 61, ~2 and rJ1 , rJ2 are linearly 
independent over the rationals then at least two different numbers 
amongst gi, 'Y/i• ef.i'lj are transcendental. It follows at once, on taking 
61 = 'Yj1 = 1, ~2 = 'Yj 2 = e, that one at least of ee and ee• is transcendental. 
Furthermore, from Theorem 12.2, one sees, for instance, that at least 
one of a log a and a (log a)• is transcendental for any algebraic number a 

other than 0 or 1. These results represent the nearest approach we 
have to date towards a confirmation of the transcendence of numbers 
of the type log 1T and e712

• 

In another direction, Langt has proved: 

Theorem 12.3. If 61, ~2, ~3 and rJ1, 'Yj2 are linearly independent over 
the rationals then one at least of the numbers ef.i1Jj is transcendental. 

Surprisingly, the demonstration of Theorem 12.3 is much simpler 
than that ofTheorems 12.1 and 12.2, and yet the result admits several 
notable corollaries. In particular, it follows that, for any algebraic 
number a, not 0 or 1, and any transcendental jJ, one at least of aP, aP\ 
aP8 is transcendental; and in fact this result holds for any irrational /]in 
view of the Gelfond-Schneider theorem. As a further example, the 
theorem plainly shows that for any real irrational jJ, the function xP 
cannot assume algebraic values at more than two consecutive 
integral values of x ~ 2. More general results of this nature, involving, 
for instance, the Weierstrass go-function, were obtained by Rama
chandra,t who apparently discovered Theorem 12.3 independently. 
The theorem also throws some light on the problem raised by Schneider 
as to the untenability of the equation 

log a logfi =logy log8 

in algebraic numbers a, jJ, y, 8, having logarithms linearly independent 
over the rationals; it shows in fact that, given a, y, there cannot be 
two solutions jJ, 8 such that all six logarithms are linearly independent. 
The problem is, of course, only a special case of the wider open question 
as to a verification of the nlgcbr1tic independence of the logarithms of 
algebraic numbers. 

We rcmnrk fin1tlly thnt moHt of our f'X)lN:tntimJH in connexion with 

t Bibliography. t :lr·ltl Arith. 14 ( IU6H), flri- HH. 

I) 
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the transcendence properties of the exponential and logarithmic 
functions are covered by a general conjecture, attributed to Schanuel, 
to the effect that if 61, ••. , gn are linearly independent over the rationals, 
then the transcendence degree of the field generated by g1, •.. , gn, 

e€1, ... , e€n over the rationals is at least n. The conjecture includes 
Theorems 1.4 and 2.1, and moreover it implies the algebraic inde
pendence of e and 7T. The power series analogue has been proved by Ax. t 

2. Exponential polynomials 

Our object here is to establish a theorem ofTijdemant on the zeros of 
functions of the form 

K-1 L 
F(z) = ~ ~ f(k, l) zke0 P, 

k=O 1=1 

We shall assume that u1, .•. , uL are complex numbers with absolute 
values at most S, and that the f's are arbitrary complex numbers for 
which F does not vanish identically. Constants implied by ~ will he 
absolute. We prove: 

Lemma 1. The number of zeros ofF in any closed disc, with radius R, 
counted with multiplicities, is ~ KL+RS. 

Tijdeman actually obtained the estimate 3KL + 4RS, hut the constants 
are not important for our purpose here. The main interest oft}le result 
lies in the fact that, in contrast to all previous theorems of its kind, 
there is no dependence on the differences between the u's, and it is 
this strengthening that leads to the improvements in Gelfond's 
results mentioned earlier. 

To commence the proof, let 0 he the circle centre the origin§ with 
radius R, and let M(R) he the maximum of IFI on 0. Further, let 

W(z) = (z-w1) ... (z-wh), 

where w1, .•. , wh run through the zeros ofF, taken with multiplicities, 
within and on 0. Then FfW is regular within and on any concentric 
circle with larger radius, and so, by the maximum-modulus principle, 

I W(v)l M(R) ~ I W(u)l M(4R), 

where u, v are some numbers with lui = Rand lvl = 4R. Now clearly 

IW(u)l ~ (2R)h, IW(v)l ~ (3R)h, 

t Ann. Math. 93 (1971), 252-68. 
~ l.M. 33 (1971), 1-7. 
§ Plainly, this choice involvos no loH>< of genoralit,v. 
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a.nd thus h ~ log(111(4R)JM(R)). 

It remains therefore to show that the number on the right is 

~ KL+RS. 

Let the sequence u1, ... , u1, ... , uL, ... , uL of N = KLnumbers, where 
each uis repeatedK times, be written as ?]1, •.. , 'IJN· By Newton's inter
polation formula we have, for any w, z, 

N 
ezw = ~ anPn(w), 

n=O 

where 

and a = _1_J ~ (S-?Jn+I)~n ds 
n 27Ti r Pn+I(S) S- W ' 

r denoting a circle with centre the origin, described in the positive 
sense, including the ?J'S and w, and 8n = 0 if n < N, 8N = 1. Clearly 
an is independent of w for n < N and aN is an integral function of w. 

We put N-l N-1 

P(w) = ~ anPn(w) = ~ Pnwn, 
n=O n=O 

and then it is readily verified that 

K-1 L N-1 
F(z) = ~ ~ f(k, l) p<k>(u1) = ~ PnF<n>(O). 

k=O l=l n=O 

We proceed now to employ the latter formula to obtain an upper 
bound for \F\. 

By Cauchy's theorem we have 

and thus 

N-1 

This gives IF(z)\ ~ M(R) ~ n!\Pn\JRn. 
n=O 

To estimate the latter sum, let 

1 f r,lzl{ 
b" = -2 . Q (s)ds, 

Tn I' n 11 

where Q"(w) = (w- S)n 1tnd I' denott~H n cird!\ ltH nhove in eluding S. 
On compnring tlw cotdliei<•nt.H in(/~,(~)) 1 urul (Q,.(b)) 1 wlwn thcHc are 
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expressed as series in decreasing powers of s, we obtain Janl ~ bn for 
all n < N. But plainly 

and so, in view of the formula 
N-1 

n!pn = ~ arp~n) (0), 
r=n 

we have 

N-1 
whence JF(z)J ~ M(R) e21zlS ~ (JzJJR)n. 

n~o 

On taking JzJ = 4R, we conclude that 

M(4R) ~ M(R)eBRS4N, 

and the lemma follows at once. 

3. Heights 
We shall require a more explicit version of Lemma 2 of Chapter 8. The 
result is due to Gelfond, who in fact obtained the proposition in a 
generalized form relating to polynomials in several variables. 

Lemma 2. If P(x) is a polynomial with degree nand height h, and 
if P = P1 P2 ••• Pk, where lj(x) is a polynomial with height h1, then 

h ;?!: e-nh1 h2 ••• hk. 

We assume without loss of generality that P(O) =!= 0. For any zero p 
of P and any complex number z with Jzl = 1, let w be the projection of 
p on the line through z and -p/JpJ, taking w = z if z = ±pfJpJ. Then, 
by simple geometry, 

lz-pl;?: Jw-pJ = !(1+1PI)Iz-p/IPII· 
Thus, if Pv .. . ,pn are all the zeros of P, then 

JP(z)J ;?: 2-nM1 •.• MkR(z), 

where M1 denotes the maximum of 1j on the unit circle and 

n 
R(z) = IT Jz-p)JPill-

i=l 
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Now for any polynomial 

Q(x) = qo+qlx+ ... +qmxm 

we have J: IQ(e2"i~)l2dp = ;~o lq;l2· 

Hence taking Q = R and noting that R has leading coefficient 1 and 
constant coefficient with absolute value 1, we obtain 

J: IP(e2"i~)l2dp ~ 21-2n(Ml ... Mk)2. 

But, on taking Q = P, we see that the number on the left is at most 
2nh2, and clearly also 

Mj ~ J: 11J(e2"i~)l2 d<ft ~ hr. 

Since en ~ n!2n, this proves the lemma. 
We shall require also a lemma closely related to the inequality 

Ia- ,BI ~ a-nb-m mentioned in § 6 of Chapter 8. Again we shall adopt 
the convention that when one refers to the height of a polynomial it is 
implied that the coefficients are rational integers, not all 0. 

Lemma 3. If ~(x), P2(x) are polynomials with degrees n1 , n 2 and 
heights hv h2 respectively and if~' P2 have no common factor then, for 
any complex number z, 

max (IP1(z)l, IP2(z)l) ~ (n1 +n2)-!<n.+n.+l>hin•h2n•. 

The proof depends on the observation that since~. P2 have no 
common factor, their resultant R is not 0. Now R can be expressed 
as the familiar Sylvester determinant of order n1 + n 2 formed by 
eliminating x from the equations 

Thus R is a rational integer and so IRI ~ 1. On the other hand, R is 
unaltered if one replaces the element in the first column and ith row by 
zi-1P1(z) fori ~ n 2 and by zi-ns-1P2(z) fori > n2. Hence, if lzl ~ 1, the 
lemma follows from the upper estimates for the cofactors of these 
elements furnished by H~tdam~trd's inequality. If lzl > 1 one argues 
similarly, replacing now the elements in the last column by numbers 
as above multiplied by z-"~-nstl, 
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4. Algebraic criterion 
We now establish a lemma giving a sufficient condition for a number 
to be algebraic; it was derived in its original form by Gelfondand later 
sharpened by Brownawell and Waldschmidt. It shows that, in a sense, 
a number cannot be too well approximated by algebraic numbers 
unless it is itself algebraic and all the terms in the sequence beyond a 
certain point are equal. We shall actually prove the proposition in a 
form relating to polynomial sequences since this is more useful for 
applications. 

First we need a preliminary lemma. Let P(x) be a polynomial with 
degree nand height h, and let z be any complex number. 

Lemma 4. If IP(z)l ~ 1 then P has a factor Q, a power of an 
irreducible polynomial with integer coefficients, such that 

IQ(z)l ~ IP(z)l exp(8n(n+logh)). 

We write P as a product P 1 ... Pk of powers of distinct irreducible 
polynomials and, for brevity, we putp1 = llf(z)l. Then, by hypothesis, 
p 1 ... Pk ~ 1 and so there exists a suffix l, possibly 1 or k, such that 

P1 · · · Pz-1 ~ Pz · · · Pk• P1 · · · Pz ~ Pz+1 · · · Pk· 

Now P1 ... Pz_1 and Pz ... Pk have degrees at most n, no common factor 
and, in view of Lemma 2, heights at most enh. Hence from Lemma 3 
and the first inequality above we see that 

P1 ... Pz-1 ~ exp (- 4n(n +log h)). 

Similarly, by virtue of the second inequality above, this estimate 
obtains also for Pz+1 ... Pk· Thus we have 

Pz ~ p 1 ... pkexp (8n(n +log h)), 

and the assertion follows with Q = Pz. 

Lemma 5. If w is a transcendental number and if lj(x) (j = 1, 2, ... ) 
is a sequence of polynomials with degrees and heights at most n1 and h1 
respectively such that 

n1 < ni+1 ~ n1, log h1 ~ log h1+1 ~ log h1, 

then, for some infinite sequence of values of j, 

log llf(w)l ~ -n1(n1+logh1). 
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Here the implied constants are again absolute. For the proof we 
assume that the latter inequality does not hold for j sufficiently large, 
and we derive a contradiction if the implied constant is large enough. 
By Lemma 4, lj has a factor Q1, a power of an irreducible polynomial, 
such that 

and, by Lemma 2, Q1 has height at most en; h1• It follows from Lemma 3 
that, for all sufficiently large j, Q1 is a power of some irreducible 
polynomial Q, say, independent ofj; for if Q1 and Q1+1 have no common 
factor then 

and, in view of the hypotheses concerning n1+1 and h1+1, this plainly 
contradicts either the previous inequality or its analogue with j 
replaced by j + 1. Since obviously Q1 is at most the n1th power of Q, we 
obtain 

logjQ(w)j ~ -(n1 +logh1), 

and since also n1 -+ oo as j--+ (f), it follows that Q(w) = 0. But this 
contradicts the hypothesis that w is transcendental. 

5. Main arguments 

The proofs of Theorems 12.1, 12.2 and 12.3 are similar to demonstra
tions of earlier chapters and it will suffice therefore to describe them in 
outline. 

For Theorem 12.1, we assume that the field generated by the 6-t and 
ef.i71J (1 ~ i,j ~ 3) over the rationals Q has transcendence degree 1 and 
we derive a contradiction. The field is then generated by a tran
scendental number w together with a number n algebraic over Q(w); 
and one can assume that n is integral over Q(w). It will be enough to 
treat here the case when the St and ef.i71i are integral over Q(w); the 
general result follows similarly on introducing appropriate denomi
nators. Constants implied by ~ and ~ , and by c1, c2, ••• will depend 
On the g's, 1J'S and W, Q only. 

One begins by constructing for any integer k ~ 1, an auxiliary 
function T,. L, 

$(z) = ~ . . . ~ p(/\0, ••• , /\:1) tuAu e(AI s1+-l-asa+Aa f.s>z 
A,. ll ,\,· ll 

satisfying $il>(1J) = 0 (0 ~ j < k) for CliWh 
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where 

m = [kl(log k)t], L0 = [klog k], L1 = L2 =La= L = [ki(log k)l], 

and the p(i\.0 ••• , "-a) are rational integers, not all 0, with absolute 
values at most kftk. Such a construction is possible, for clearly $U>(1J) 
can be expressed as a linear form in the p's with coefficients given by 
polynomials in w, Q; the latter have degrees ~ L0 in w, ~ 1 in Q and 
heights at most i'cC• k. Thus one has to solve M ~ makL0 linear equations 
in ~ L3 L0 > 2M unknowns, and Lemma 1 of Chapter 2 is therefore 
applicable. 

Let now C, r be the circles centre the origin described in the positive 
sense with radii k and lei respectively. Then, for any z on r, 

1 f (A(z))k $({;) 
$(z) = 211i o A(s) s -z d{;, 

where A(z) denotes the monic polynomial with m3 zeros 'IJ· Hence we 
see that 

log J$(z)J ~ -m3klogk, 

and since, by Cauchy's theorem, 

q>U>( ) = ~I <l>(z)_ dz, 
1J 2m I' (Z-'1])1+1 

it follows that, if j ~ k(log k)!-, then the same estimate obtains with 
<l>(z) replaced by <J>U>('IJ). But, by Lemma 1, <I> has ~ £3 zeros within 
and on C, and so <J><i>('IJ) =1= 0 for some 1J and some j as above. Further, 
<J>U>('IJ) is a polynomial inw, Q with rational integer coefficients, and, on 
taking the product of its conjugates over Q(w), we derive a polynomial 
P(x) with degree nand height h satisfying 

n ~ klog k, logh ~ k(log k)i, 

logJP(w)J ~ -m3klogk~ -k2 (logk)'.". 

As k increases we obtain a sequence of such polynomials P and, 
plainly, this contradicts Lemma 5. The contradiction proves the 
theorem. 

The proof of Theorem 12.2 is similar. Under analogous initial 
assumptions, one constructs, for any integer k ~ 1, an auxiliary 
function 

satisfying <J>U>('IJ) = 0 (0 ~ j < k) for each 

1J = l1 '1]1 +la1Ja (1 ~ l1 ~ m1, I ~ l2 ~ rn2), 
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where m1 = [k!(log k)-l], m 2 = [(k log k)!], 

L 0 = L 3 = k, L1 = L 2 = [H(log k)l], 

and the p(i\0 , ••• , i\3) are again rational integers, not all 0, with absolute 
values at most /&1k, The construction is certainly possible, for, in view 
of the hypothesis that e€1'1• and esz'lz are algebraic, the coefficients in the 
linear forms <J>U>(1J) have the same properties as in the previous argu
ment, whence one has only to solve M ~ m1 m 2k2 linear equations in 
~ k3 (log k)t > 2M unknowns. Nowbythefirstintegralformula above 
with A denoting here the monic polynomial with m1 m 2 zeros 1J, one has 

log I <l>(z)j ~ - ~ m 2 k log k, 

for all z on r, and, by the second integral formula, we see that the same 
estimate obtains with <l>(z) replaced by <J>U>(1J) for allj ~ k and all 

11' = l~1J 1 +l~1J2 (1 ~ li ~ m~, 1 ~ l~ ~ ~), 

where m~ = [k!(log k)-l], m~ = [k!(log k)!]. 

But, by Lemma 1, <I> has ~ L1 L2L3 zeros within and on 0, and so 
<J><i>(1J') =!= 0 for some 11' and some j as above. Thus, on taking con
jugates over Q(w). and appealing again to the hypothesis concerning 
e61'lo, eG•'~•, we derive a polynomial P(x) with degree n and height h 
satisfying 

n ~ k(log k)t, log h ~ k log k, 

logjP(w)j ~ -m1m2klogk ~ -k2(logk)f. 

This contradicts Lemma 5 and the required result follows. 
Finally, for the proof of Theorem 12.3, one assumes that all the eEi?Ji 

are algebraic and, adopting a notation as above, one constructs, for 
any integer k ~ 1, an auxiliary function 

L L L 
<l>(z) = ~ ~ ~ p(/\1,/\ 2,i\3)e<.l.I61+.l.zEzHasa)z 

.l.1 =0.l. 1 =0.l.1 =0 

satisfying <I>(1J) = 0 for each 

1J = l11J1 +l2 172 (1 ~ l1, l2 ~ k), 

where L = [k!], and the p(l\v i\2, /\ 3) are rational integers, not all 0, 
with absolute values at moRt c['k. If now m iR any integer ~ k and if 
<1>(1J) = 0 for all1J with I ~ llt l2 ~ m then atlHo (l>(1J') = 0 for all 

1J' ~-= 1;111 +l~·'I'J (I ~ z;, l~ ~ m + 1). 

Indeed, tho funetiou (1>/A, wlwl'O A d(•uot.t•H t.lw 1nouio polyuominl with 



128 ALGEBRAIC INDEPENDENCE 

m2 zeros 'fJ, is clearly regular within and on the circle 0 centre the origin 
and radius m~, and so, by the maximum-modulus principle or, alter
natively, the first integral formula above, we have 

log \<l>('f/')1 ~ -m2logm; 

on the other hand, on multiplying <l>('fJ') by a suitable denominator, 
one obtains an algebraic integer in a fixed field with size 8 satisfying 
log 8 ~ mi, and the assertion now follows on considering the norm of 
<l>(rJ'). We conclude that <l>(rJ) = 0 for all positive integral values of 
l1, l2, and hence <l>(z) vanishes identically. But this contradicts the 
hypothesis that £1, £2, £3 are linearly independent over the rationals, 
and the contradiction proves the theorem. 
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