MPASM Assembler

with MPLINK and MPLIB
Linker and Librarian

David Rye :: MTRX 3700 MPASM Assembler :: Slide 1 of 78

What iIs <A> ?

= Assembly Language
» Instructions for a uP written in the form of mnemonics

» Confusingly also referred to as “assembler”, as in “assembler
code”, orto “... program in assembler ...”

= Assembler

= A program that translates from an assembly language to machine
instructions

= A Cross Assembler is a program that runs on one type of processor
(e.g. x86) and produces machine instructions for another type (PIC)

= Assemble

» Translate to machine instructions (an assembly language is
assembled, a HLL is compiled or interpreted)

= Assembly
» The process of translation

David Rye :: MTRX 3700 MPASM Assembler :: Slide 2 of 78

What is an Assembler?

= At least: atranslator from mnemonics to binary instructions
ADLW h’AA®” = 00001111 10101010

= [nvariably, an assembler:
= Has a set of directives that control assembler processing
= Calculates relative addresses from instruction labels and variable names

= Most assemblers are macro assemblers
= Perform macro substitution, expansion and calculation at assembly time

= Macro language allows assembly language programming at a higher level of
abstraction

local 1 =0 ; establish local index variable and initialize
while 1 < 8 ; do <something> 8 times

<something>

i +=1 ; Increment loop counter
endw ; break after eight loops

» Structured assembler — see Peatman for example and source code
= Very simple form of compiler
= Allows control structures (e.g. if-then-else) that are active at run time

David Rye :: MTRX 3700 MPASM Assembler :: Slide 3 of 78

MPASM Assembler Files

Input to Assembler:
= _asm Assembly language source file

Output from Assembler:

= _Ist Assembler listing file

= _err Assembler error messages
= .0 Relocatable object file

David Rye :: MTRX 3700 MPASM Assembler :: Slide 4 of 78

Assembler Listing File (. Ist) Format

MPASM 5.57

LOC OBJECT CODE

VALUE

0000000B

000000

000000 OEOA
000002 6EOB
000004 EF?? F?7?7?

000124 EF?? F?7?7?

David Rye :: MTRX 3700

SAMPLE .ASM

LINE SOURCE TEXT

8-25-2014 12:37:00

00001 ; Sample MPASM Source Code.

00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015

Dest

Start:

list p=18F452

equ
org
mov lw
movwT

goto

org
goto

end

Ox0B
0x0000
OxO0A
Dest
Start

0x0124
Start

MPASM Assembler

:: Slide 5 of 78

Assembler Listing File (. Ist) Format

MPASM 5.57 SAMPLE .ASM 8-25-2014 12:37:00

SYMBOL TABLE

LABEL VALUE
Dest 0000000B
Start 00000000

00000001

Errors : 0
Wwarnings : O reported, O suppressed
Messages : O reported, O suppressed

defined because we are building
for the PIC18F452 processor

David Rye :: MTRX 3700 MPASM Assembler :: Slide 6 of 78

What iIs <L> ?

= | inker

= Program that translates one or more relocatable object
modules into executable instructions with absolute
addresses

= Library
= Collection of relocatable object modules
= Librarian

= Program that creates and manages a library
= Add, remove, replace, list object modules

David Rye :: MTRX 3700 MPASM Assembler :: Slide 7 of 78

MPLINK Linker Files

Input to Linker:
= .0 Relocatable object file — or —

= _l1b Relocatable object code in library file

Output from Linker
= _hex Absolute machine code, Intel Hex format

= _cof Absolute machine code, in Common Object

File Format — contains executable code and
symbol table

= _map Load map file —shows where program and data objects
are placed in memory

David Rye :: MTRX 3700 MPASM Assembler :: Slide 8 of 78

Workflow — Assembler and Linker

= Assemble one or more assembly language Source Files
xxxx.asm to Relocatable Object Files using MPASM

= Link relocatable object files with linker MPLINK to

form absolute executable file
= Even one file must be linked!

(to calculate absolute
addresses)

MAIN.ASM

MORE.ASM

David Rye :: MTRX 3700

MPASM

MPASM

LINITS.LIB

S

MAIN.O

e

o
o +)
o Q
MPLINK MAIN HEx |LEregrammel e g CPU g
o Q
o o
o a

MORE.O

MPASM Assembler :: Slide 9 of 78

MPLAB X File Structure:
Assembler and Linker Outputs

\---Example.X
| Source files: *.asm, *.inc
| Makefile
|
+---build (Assembler Output — safe to delete)
| \---default
| +---debug
| | Listing files *.Ist
	Error files *.err
	Relocatable Object files *.0
\---production	
Listing files *.Ist \---nbproject (Project Configuration —don’t edit!)	
Error files *.err	configurations._xml
Relocatable Object files *.0	Makefile-default._mk
	Makefile-genesis.properties
+---dist (Linker Output — safe to delete)	Makefile-impl.mk
\---default	Makefile-local-default.mk
+---debug	Makefile-variables.mk
	Example.X.debug.cof
	Example.X._.debug.hex
	Example.X.debug.map
\

--—private
\---production configurations.xml
Example_X_.production.cof private._properties

Example.X.production.hex
Example.X.production.map

David Rye :: MTRX 3700 MPASM Assembler :: Slide 10 of 78

Workflow — Librarian

= Librarian MPLIB can be used to

create and manage libraries of Ty
relocatable object code. o W>
= For example: il

= clib.lib
= p18F452._1ib

—l/
= myLib.li1b UNIT2ASH @> =i UNITS.LIB
HEEE

UNIT1.0

UNIT2.0

UNIT3.ASM | MPASM MPLIB

e

UNIT3.0

David Rye :: MTRX 3700 MPASM Assembler :: Slide 11 of 78

The Assembler: MPASM

David Rye :: MTRX 3700 MPASM Assembler :: Slide 12 of 78

The Assembler: MPASM

= Universal macro assembler for all PIC devices

= Device capabilities and mnemonics (of course)
change from one device to another...

= Choice of three interfaces
» Command-line (DOS shell) interface
= Stand-alone MS-Windows application
* |ntegrated with Microchip’s MPLAB IDE

= An integral part of MPLAB X IDE

David Rye :: MTRX 3700 MPASM Assembler :: Slide 13 of 78

MPLAB X Help Files

MPLAB X is Microchip’s (free) IDE
MPLAB X v. 3.05 available from UoS website

The on-line help files in MPLAB X are good
Go to Help = Contents ® MPASMX Toolsuite

David Rye :: MTRX 3700 MPASM Assembler :: Slide 14 of 78

Assembly Language Syntax

Rules for assembly language source code

David Rye :: MTRX 3700 MPASM Assembler :: Slide 15 of 78

Syntax: Assembly Language File

= Each line of code may contain zero or more
= Labels
= Mnemonics
= Operands
= Comments

» Maximum line length is 255 characters
= Whitespace is not significant

Wait:
btfss PIR1, ADIF - walt for A/D conversion done

David Rye :: MTRX 3700 MPASM Assembler :: Slide 16 of 78

Syntax: Assembly Language File

= Labels

= Start in column 1 (corollary: anything starting in column 1 is a label)
Are case-sensitive by default
Must begin with alphabetic character or underscore ()
Can be 32 characters long
Can be followed by a colon (z) or whitespace
* Mnemonics (e.g. moviw)

= Must not start in column 1

» Must be separated from label(s) by colon (:) or whitespace
= Operands

» Must be separated from mnemonics by whitespace

= Multiple operands must be separated by acomma (,)
= Comments

= Can start anywhere
= Everything from a semicolon (;) to the end-of-line is a comment

David Rye :: MTRX 3700 MPASM Assembler :: Slide 17 of 78

Syntax: Assembly Language File

Radixes (Bases)

Hexadecimal: H>A3” or OxA3 (default)

Decimal D”163” Note — all the same number,
Octal: 07243’ but different radixes!
Binary: B*10100011~

Default radix is Hexadecimal
There is no floating point type

ASCII Character: ?’C” or A’C’

ASCII String: “A String”
= Note! A string is not Null-terminated unless you add the terminator!

David Rye :: MTRX 3700 MPASM Assembler :: Slide 18 of 78

Assembler Directives

Directives =

Instructions in the source code that tell the
assembler how to assemble a source file

David Rye :: MTRX 3700 MPASM Assembler :: Slide 19 of 78

Assembler Directives

= Assembler directives are placed in the assembly
language source file, and tell the assembler how to
assemble the source.

= They are not active at run time
* They are not case sensitive

» There are many arithmetic and logic operators that
can be used to construct directive expressions
» For example: +, -, *, /,<<,==,<=,~, 1, &, |1, etc...
= See precedence table in MPASM User’s Guide

David Rye :: MTRX 3700 MPASM Assembler :: Slide 20 of 78

Assembler Directives

* There are six types of assembler directives, for
Assembler Control

Conditional Assembly

Data Definition

Listing Control

Object File Control

Macro Definition

o0 hs wWwhPeE

David Rye :: MTRX 3700 MPASM Assembler :: Slide 21 of 78

1. Assembler Control Directives

= Defining which processor we are building for
* Defining assembler error reporting level
Defining symbolic names

Including files

David Rye :: MTRX 3700 MPASM Assembler :: Slide 22 of 78

Assembler Control — Configuration

PROCESSOR: Defines the build target processor
processor <processor> processor 18452

RADIX: Specify default radix (base)

radix <default_radix> radix hex

= Options are hex, dec, oct
» Radix defaults to hex if not specified

ERRORLEVEL: Set diagnostic message level

errorlevel 0]|1]2]<+-><msg_number> errorlevel O

= 0 is show all errors and warnings, 2 is show none
» [mportant hint!! Use errorlevel 0
" _<msg_number> suppresses a single message

David Rye :: MTRX 3700 MPASM Assembler :: Slide 23 of 78

Assembler Control — Symbols

EQU: Defines a symbolic label for a constant

<label> equ <expr>
9 P HEIGHT equ D17’

: DEPTH equ HEIGHT * 2
= expr IS a number

= See examples in p18f452.inc

SET: Defines a symbolic label for a variable

Length set 2
<label> set <expr> 9

Area set HEIGHT * Length

Length set Length + 1

= Same as EQU except that value of <label> can
be redefined with another SET

David Rye :: MTRX 3700 MPASM Assembler :: Slide 24 of 78

Assembler Control — Symbols

CONSTANT: Declare symbol constant
constant <label> = <expr>
[, <label> = <expr>]

= A constant must be initialised when defined,
and cannot be changed

VARIABLE: Declare symbol variable

variable <label> [= <expr>]
[. <label> [= <expr>]]

= A variable does not need to be initialised when
defined (as in SET), and value can be changed
subsequently

= Variable value must be formed before being used
as an operand

David Rye :: MTRX 3700

constant BuffLen = D’512~
constant MASK = ~(0xAA)
flags &= MASK

variable RecLen = D”64~
variable Memory = RecLen * BufflLen

MPASM Assembler :: Slide 25 of 78

Assembler Control — Placing Code

ORG: Set absolute program origin

<label> org <expr>
9 P org 0x000008

= Sets the value of the assembler’s location counter goto HighlISR
= For PIC18 <expr> must be an even number ; HighISR replaced by address

= The location counter value at assembly time
IS equivalent to the PC value at run time

= Cannot be used when generating a 'f'gf_"SRi o
relocatable object file ; High priority ISR goes here

= Use CODE, UDATA, UDATA_ACS, IDATA

directives instead (see later) RETFIE

David Rye :: MTRX 3700 MPASM Assembler :: Slide 26 of 78

Assembler Control — Defines

#DEFINE: Define a text substitution symbol

#UNDEFINE: Delete a text substitution symbol
#define <symbol> [<string>]
#undefine <symbol>

= Same mechanism as in ANSI C

= <string> will be substituted for <name> from
the point where #defined

#IFDEF: Execute if symbol is defined
#IFNDEF: Execute if symbol is not defined
#ENDIF: Terminates conditional block
ifdef <symbol>
<something>
endif

David Rye :: MTRX 3700

#define MAX_INT D?65535”

#define DEBUG

#ifdef DEBUG
constant BuffLen = 8

variable RecLen = 4
#else

constant BuffLen = D512’

variable RecLen = D64~
#endi

#undefine DEBUG

MPASM Assembler :: Slide 27 of 78

Assembler Control — Include

INCLUDE: Literally include a file at this point
#include <path\filename>
#include “path\filename”
#include path\filename
= Similar to ANSI C

= No difference in behaviour between the
forms <File> and “file” and Ffile

= Search path order is current directory; source
file directory; MPASM executable directory

David Rye :: MTRX 3700

; get register symbols, etc
#include pl18f452.i1nc

; define configuration bits
#include configReg.inc

MPASM Assembler :: Slide 28 of 78

The low, high and upper Operators

LOW: Return the low byte (bits <7:0>)
of a multi-byte value

HIGH: Return the high byte (bits <15:8>)
of a multi-byte value

UPPER: Return the upper byte (bits <21:16>)
of a multi-byte value

David Rye :: MTRX 3700

table:
data “I’m a ”
data ““beatles ”
data ‘“‘eater”

; Load TBLPTR with the address of “1’
moviw UPPER table
movwf TBLPTRU
moviw HIGH table
movwf TBLPTRH
moviw LOW table
movwf TBLPTRL

MPASM Assembler :: Slide 29 of 78

The banksel Directive

BANKSEL.: Generate bank selecting code

(mov 1 b) that selects the correct banksel Varl ; Select correct
bank for a variable in any bank of ; ba'j'k for Vvarl
RAM movwF Varl, F, BANKED ; Write to Varl

banksel label

David Rye :: MTRX 3700 MPASM Assembler :: Slide 30 of 78

Assembler Control — Termination

END: End of assembly language program
end

= Every program must finish with an end directive
= Everything after end is ignored

David Rye :: MTRX 3700 MPASM Assembler :: Slide 31 of 78

2. Conditional Assembly Directives

= Permit sections of code to be conditionally
assembled

» These are active only during assembly —they are
not active at run time

= Similar to C language preprocessor directives — e.g.
#ifdef TESTING
// some C code here
#endi1

David Rye :: MTRX 3700 MPASM Assembler :: Slide 32 of 78

Conditional Assembly — 1f-else-endif

We have already seen IFDEF, IFNDEF

IF: Begin conditionally assembled block

ELSE: Begin alternative block to IF if rate < 50

INCF speed, F
ENDIF: End conditional assembly block else

#if <expr> DECF speed, F
<assembly_code> endif

[#else
<alternative _assembly code>]

#endi T

= <expr> is evaluated — non-zero is interpreted
as logically TRUE

David Rye :: MTRX 3700 MPASM Assembler :: Slide 33 of 78

Conditional Assembly — While

WHILE: Loop while <expr>is TRUE
ENDW: End of a WHILE loop
while <expr>

<assembly code>
endw

= <expr> is evaluated and a non-zero value is
interpreted as logically TRUE

» <assembly code> cannot exceed 100 lines

= Cannot loop more than 256 times

=Active at assembly time

David Rye :: MTRX 3700 MPASM Assembler :: Slide 34 of 78

The Five ENDs

= Don’t confuse the various ENDx directives!!

END: End of the assembly program any program = end
ENDIF: End of a conditional block i1t & endif
ENDW: End of a while loop while & endw
ENDM: End of a macro definition macro <& endm
ENDC: End an automatic constant block cblock & endc

(cblock defines a list of named constants)

David Rye :: MTRX 3700 MPASM Assembler :: Slide 35 of 78

3. Data Definition Directives

= Control memory allocation and symbol definition

= This is how to define named “variables” in RAM and
named constant values in FLASH

David Rye :: MTRX 3700 MPASM Assembler :: Slide 36 of 78

Data Definition — Integers

DB: Declare data of one byte (in ROM or RAM)
DW: Declare data of one word (in ROM or RAM)
DE: Declare EEPROM data of one byte
db <expr> [,<expr>,...,<expr>]
dw <expr> [,<expr>,...,<expr>]
de <expr> [,<expr>,...,<expr>]

= All reserve storage in program or data memory and
Initialize the memory location(s)

= db packs 8-bit values into 16-bit memory.
= dw behaves like db for PIC18 devices

= dw packs words into data memory in low-
byte/high-byte order

= See the idata and code_pack directives
= de places 8-bit values into EEPROM

David Rye :: MTRX 3700

; Absolute code In FLASH
org 0x2000
errorFlags: db B”10100011”

highLimit: dw D?350”

astring: db “Hello Room!”

. Relocatable code 1n RAM
udata_acs
accessVar: db 0x55

udata 0x300
myVariable: db D”99”

MPASM Assembler :: Slide 37 of 78

Data Definition — General

DATA: Create numeric and text data

data <expr>,[,<expr>,...,<expr>]
data ''<text_string>‘
[,""<text_string>",...]

= General data definition - places numeric or
text data into Program Memory
= Single characters placed in low byte of word

= Strings packed 2 characters per 16-bit word, first
character in LSB

= Can be used to declare values in IDATA

FILL: Fill memory block with value
fill <expr>, count

= |f bracketed by parentheses, <expr> can be a
(16-bit long) assembly language instruction

David Rye :: MTRX 3700

data “C” ; one character
data “Sharp” ; string
Numbers:

data 1, 2, 7 ; some numbers

fill 0x5555, D”10”
fill (nop), NEXT_BLOCK-$

MPASM Assembler :: Slide 38 of 78

Data Definition — Un-initialised Memory

RES: Reserve memory
res <mem_units>
= Reserve a number of bytes
of memory
= Do not initialize the memory

= |n absolute code, Program Memory will be
reserved

= |n relocatable code, memory can be either in
in Program Memory or Data Memory

= See code directive (Program Memory) and
udata directive (Data Memory)

David Rye :: MTRX 3700

; Absolute code
org 0x2000
res 0x20 ; 32 bytes

: Relocatable code

Globals:
udata
temp res 1
time res 2 ; 2 bytes

MPASM Assembler :: Slide 39 of 78

Data Definition — gC Configuration

PROCESSOR: Set processor type
processor <processsor_type>

CONFIG: Set processor configuration bits
config <bit>=<value>
__confTig is deprecated

= Sets the configuration bits
= Processor must previously have been declared

= Best practice: use to over-ride MPLAB X config
bit settings. See configReg. inc on server

= See usage and definitions in p18f452.inc

__IDLOCS: Set values of processor ID locations
= Similarto _ CONFIG

David Rye :: MTRX 3700

PROCESSOR 181452

#include configReg.inc ; or
; Configuration Register 1H

; Oscillator switch disabled,
; EC oscillator.

CONFIG OSCS=0FF, OSC=EC

, etc,

MPASM Assembler :: Slide 40 of 78

Data Definition — RAM Configuration

__ MAXRAM: Specify maximum RAM address
___Mmaxram <expr>

= Specifies the highest address of physical RAM

__BADRAM: Specify invalid RAM addresses
__badram <expr>

= Can have more than one __badram directive

= maxramand __ badram together allow strict
RAM address checking

David Rye :: MTRX 3700

processor 18F452
___MAXRAM H*"FFF*

; Unimplemented banks
___BADRAM H*600"-H"F7F*"

; Unimplemented SFRs
___BADRAM H*F85"-H"F88"
___BADRAM H*FBE"-H"F91*"
___BADRAM H*F97"-H"F9C*"
___BADRAM H*FA3"-H"FA5*"
___BADRAM H*FAA*®
___BADRAM H*FB4"-H"FB9*"

MPASM Assembler :: Slide 41 of 78

4. Listing Control Directives

= Directives to control the content and format of the
assembler listing file xxxxx.lst

David Rye :: MTRX 3700 MPASM Assembler :: Slide 42 of 78

4. Listing Control Directives

TITLE: Specify Program Title for listing
SUBTITLE: Specify Program Subtitle for listing
title “<title_text>”
subtitle “<subtitle_text>”

= [f defined, title and subtitle print on each
page of the listing

SPACE: Insert Blank Lines
PAGE: Insert Page Eject
space <expr>
page
= space inserts a number of blank lines
into the listing file

" page inserts a new page character
into the listing file

David Rye :: MTRX 3700

title “Code Release 2006-03-16"
; Stuff here

page

subtitle “Memory Diagnostics”
; Memory Diagnostic code here

MPASM Assembler :: Slide 43 of 78

Listing Control Directives

LIST: Turn on listing, with options
NOLIST: Turn off listing

list [<optionl>][, <option2>
[. ---111

nolist

= list, with no options, turns listing on

= Options (14 of them) control various
listing settings — see Assembler Manual / help

» nolist turns off listing

EXPAND: Expand Macros in Listing
NOEXPAND: Don’t Expand Macros in Listing

expand or noexpand

= Expand or suppress expansion of all macros
in listing file

David Rye :: MTRX 3700

; suppress listing of symbols, etc
nolist
include pl1l8f452.inc

; turn listing back on
list

MPASM Assembler :: Slide 44 of 78

Listing Control Directives

if size > MAX_INT
error "16-bit value exceeded"
endif

ERROR: Issue a user-defined error
message

MESSG: Create user-defined message

messg ‘“message_text”
error “error_text”

= Both print user-defined messages variable baudrate]
baudrate set D"5600" ; required baud rate

#include pl18f452.1nc

1T (baudrate!=D"12007)&&(baudrate!=D"2400")&&
(baudrate!=D"4800")&&(baudrate!=D"9600")&&
(baudrate!=D"19200")
error "Selected baud rate is not supported”
messg "‘only baud rates 1200,2400,4800, "&&
9600 & 19200 Hz are supported"
endif

David Rye :: MTRX 3700 MPASM Assembler :: Slide 45 of 78

Relocatable Object Files

David Rye :: MTRX 3700 MPASM Assembler :: Slide 46 of 78

Relocatable Object Files

= Assembled (or compiled) object files xxxxx.0 with
no assocliated absolute load addresses

= Required for
= Building pre-assembled object libraries with MPLIB

= Linking assembly language and C language modules —
Compiler output will be relocatable

= Specify the segment (or section) for placement of
each part of the linker output, rather than absolute
addresses

David Rye :: MTRX 3700 MPASM Assembler :: Slide 47 of 78

5. Directives for Relocatable Object Code

So we need directives to work with
= Projects with multiple assembly language files

* Placing information into Program or Data Memory
* Relocatable Object Files

Here they are...

David Rye :: MTRX 3700 MPASM Assembler :: Slide 48 of 78

Directives for Object File Imports/Exports

EXTERN: Declare an externally defined label

extern <label> [, <label> . _.]

= Use when using/generating relocatable object file

= Similar to C/C++ extern — declare a label (name
of subroutine, etc) that is declared outside the
file being assembled

= Resolved by the linker

GLOBAL: Export alabel to the linker

global <label> [,<label>]

= Use when using/generating relocatable object file

= Declare a label (name of subroutine, etc) to
make it visible outside the file being assembled

= Resolved by the linker

David Rye :: MTRX 3700

; Subroutine is called from one
; assembly language fTile

extern Subroutine

call Subroutine

; Subroutine is defined In
; a different fTile

global Subroutine
Subroutine: code

; body of subroutine

return

MPASM Assembler :: Slide 49 of 78

Relocatable Program Memory Segments

Location of executable code (or constant values) in ROM

= Absolute: Use an Org directive to locate code at an
absolute address

= Relocatable: Declare a code segment (or a

code pack segment) and allow the linker to
calculate the address

= Valid address ranges specified in a Linker Script File

David Rye :: MTRX 3700 MPASM Assembler :: Slide 50 of 78

Directives for Object Code Memory Segments

CODE: Begin an executable code segment
(or constants stored in program memory)

[<label>] code [<ROM_addr>]

= |f <labe I> unspecified, defaults to . code

= Starting address initialised to <ROM_addr>,
or at link time if no address specified

CODE_PACK: Begin packed code segment
(constants stored efficiently in program memory)

[<label>] code_pack[<ROM_addr>]

= Used to place constant data (one byte per byte)
into FLASH memory (use db)

= Use with de to place constant data into EEPROM

David Rye :: MTRX 3700

: Executable code
RST code 0x00
goto start

; Padded data — append padding
; byte of O to odd number or bytes

padded: code
DB 1, 2, 3
DB 4, 5

; Packed data — no padding bytes
; appended

packed: code pack Ox1FO
DB 1, 2, 3
DB 4, 5

MPASM Assembler :: Slide 51 of 78

Relocatable Data Memory Segments

= Data (variables) can be assigned to 1 of 5 segments:

» udata
= udata_acs Each Un-initialised - use the
» udata ovr RES directive
» jdata
idata _acs Initialised (at least potentially...) —use

DB, DW, etc. directives

* The linker will place each of these in RAM, at
locations specified by a linker file, xxx. IKr

= If alinker file is not added to the project, the default
generic linker file 18F452 g. lkr is used

David Rye :: MTRX 3700 MPASM Assembler :: Slide 52 of 78

Un-initialised Data Memory Segments

= Data stored in any of these segments is not
Initialised
= Can only be accessed through:

» Labels (variable names) declared in the segment
* Indirect addressing

» udata — Un-initialised data, placed in RAM >= 0x80
» udata _acs - access data, placed in Access RAM

= udata_ovr —overlaid data

» Used for variables that can be placed at the same addresses
because they exist at different, non-overlapping times

David Rye :: MTRX 3700 MPASM Assembler :: Slide 53 of 78

Directives for Object Code Memory Segments

UDATA: Begin un-initialised data segment
[<label>] udata [<RAM_addr>]

= |f <labe I> unspecified, defaults to .udata

= Declares a segment of Un-initialised data

= Starting address initialised to <RAM_addr>,
or at link time if no address specified

UDATA_ACS: Begin object file un-initialised data
segment in Access RAM

[<label>] udata_acs [<RAM_addr>]

= |f <label> unspecified, defaults to .udata_acs

= Declares a segment of Un-initialised data in
Access RAM

= Starting address initialised to <RAM_addr>,
or at link time if no address specified

David Rye :: MTRX 3700

. Relocatable code — variable
; In (banked) RAM

udata
aVariable: res 1

: Relocatable code — variable
: 1IN access RAM

udata_acs
accessVar: res 1

MPASM Assembler :: Slide 54 of 78

Directives for Object Code Memory Segments

UDATA_OVR: Begin object file un-initialised data
overlay segment

[<label>] udata_ovr [<RAM_addr>]

= |f <labe > unspecified, defaults to .udata_ovr

= Un-initialised data in this segment is overlayed
with all other data in udata_ovr segments of
the same name <label>

David Rye :: MTRX 3700

MPASM Assembler :: Slide 55 of 78

1data - Initialised Data Memory Segment

= Data elements in 1data or 1data_acs can be initialised — that
IS, given initial values

= Use the DB, DW, or DATA directives to
a) reserve memory and
b) specify initial values

= Question: 1datais a RAM segment (volatile), so
where do the initial values come from?

David Rye :: MTRX 3700 MPASM Assembler :: Slide 56 of 78

Directives for Object Code Memory Segments

IDATA: Begin an object file initialised data segment

[<label>] i1data [<RAM_ addr>] initialisedGlobals:

= Use when generating relocatable object file idata
LimitL: dw O

= |f <label> unspecified, defaults to . idata .
_ o LimitH: dw D”300”
= Locatll_orl: (?our!;er mﬂghsed to <F_2f,_AMd_add r>, Gain- dw D’5°
or at link time if no address specifie Flags db O

" Linker generates look-up table entry nROMfor | s¢rijng db “v-Axis”,0
each entry. User must add initialisation code to
copy values from ROM to RAM using the
“ cinit table”. Seethefile IDATA.ASM fora

good example

David Rye :: MTRX 3700 MPASM Assembler :: Slide 57 of 78

1data - Initialised Data Memory Segment

The linker generates and populates atable (the“ _cinittable”)
In ROM that contains an entry for each initialised data element
Table begins with a 16-bit number num_1nit that stores the
number of initialised data element

Each table entry has three 32-bit integers that store
» The from address in ROM (FLASH)
» The to address in 1data or 1data_acs RAM
» The size in bytes of the data element

User code must copy each from byte to the corresponding to at
run-time, but before the main code (assembler or C) executes

See the examples in IDATA.asmand c18i1.c

David Rye :: MTRX 3700 MPASM Assembler :: Slide 58 of 78

Example — Data Segments

* From the . Istfile generated by MPASM

Segment type

000000 00006 Limetl RES 1
000001 QU007 Lanitll RES 1
00008

00009 Initialised(1DATA)

pouaod 52 8 62 0) 00010 S iR DB Rl [= Ox52 75 62 72 69 B3 60

63 00
000007 D2 04 00011 Gain D D 1254 . 1254 = Ox0O4D2
00012
000000 A5 00014 Flags dy B 1010010 - . OxA5

Name of this segment

David Rye :: MTRX 3700 MPASM Assembler :: Slide 59 of 78

Example — Data Segments

* From the .map file generated by MPLINK

Section .cinit contains the cinit table
.cinit section starts at 0x000008

Section Info

Section Address Logation Size(Bytes)

arg o 0x000000 program 0x000008
SZE?E?E) romdata 0x000008 program 0x00001a
nitialised_i > romdata 0x000022 program 0x000009
Access i romdata 0x00002b program 0x000001

ag 1 code 0x000124 program 0x000004

Access idata 0x000000 data 0x000001

idata 0x000080 data 0x000009
Uninitialised udata 0x000089 data 0x000002

Section Initialised 1 contains the initial values of initialised variables
Section Initialised contains the initialised variables

David Rye :: MTRX 3700

MPASM Assembler :: Slide 60 of 78

Example — Data Segments

= Contents of Program Memory

movIiw OxO0A
movwf DEST start of _cinittable

goto START
Addr 00 04 ¢/ 08 e =

02 06
.......... ¥ i
0000 (OEOA) (6EOB FOO FOO o022 0028 0000 OO0 I o DR

0010 0000 0001 0000 0022 0000 0080 0000 0009 Y ..
0020 0000 7552 7262 6369 (D2D0 ASQ4) FFFF FFFF ..Rubric

UR rb ¢ j/}* /0

initial value of Gain = 0x04D2

\initial value of Flags = OxA5

= cinitTable

0002 num_Init=2
0000 002B 0000 0000 0000 0001 copy 1byte from 0x00002B (ROM)to 0x000 (RAM)
0000 0022 0000 0080 0000 0009 copy 9 bytes from 0x000022 (ROM)to 0x080 (RAM)

David Rye :: MTRX 3700 MPASM Assembler :: Slide 61 of 78

MPASM Macro Language

A simple form of preprocessor that allows
for limited higher-level abstraction

David Rye :: MTRX 3700 MPASM Assembler :: Slide 62 of 78

Macros

= Allow “functions” with “arguments”

» Macro processor can function like a simple compiler

* In reality, macro processor is just doing
substitutions — “macro expansion”

David Rye :: MTRX 3700 MPASM Assembler :: Slide 63 of 78

Macro Syntax

= Syntax is
<label> macro [<argl>, <arg2>, ..., <argn>]
<statements>
endm . ends macro definition

= <label>is the symbolic name of the macro
= Zero or more arguments

= Values assigned to arguments when macro is invoked are
substituted for the argument names in the macro body

» Body <statements> may contain
= Assembly language mnemonics

= Assembler directives
= Macro directives macro, local, exitm, endm, expand / noexpand

David Rye :: MTRX 3700 MPASM Assembler :: Slide 64 of 78

6. Directives for Macro Definition

= Control execution and data allocation within macros
* macro - Declare macro Definition
= exitm- Exit from a macro (stop expansion; exit to the endm)
= endm - End a macro definition
» expand - Expand macro listing
= noexpand - Turn off macro expansion
= local - Declare alocal macro variable

David Rye :: MTRX 3700 MPASM Assembler :: Slide 65 of 78

Macro Definitions

MACRO: Declare a macro definition
ENDM: End a macro definition

<label> macro [<arg>,...,<arg>]
<statements>

endm

len equ 10
size equ 20

m_buffer:
macro size
local len, label

LOCAL: Declare local macro variable len set size

label res len
local <label> [,<label>] _
len set len - size

= Declared inside a macro — local scope endm

EXITM: Exit from a macro
exitm

= Forces immediate exit from macro
during assembly

David Rye :: MTRX 3700 MPASM Assembler :: Slide 66 of 78

Example — Macro Definition

= Macro definition is
#include “pl8f452.1nc”
; Compare register aReg to a constant aConst and
; jump to aDest 1T register value >= constant.

mCmpJge: macro aReg, aConstant, aDestination
mov Iw aConstant
subwf aReg, W
btfsc status, carry
goto aDestination
endm

David Rye :: MTRX 3700 MPASM Assembler :: Slide 67 of 78

Example — Macro Invocation

* When invoked (“called”) by:

mCmpJdge switchVal, maxSwitch, switchOn

the macro mCmpJge will produce (expand to):

mov Iw maxSwitch
subwf switchval, W
btfsc status, carry
goto switchOn

David Rye :: MTRX 3700 MPASM Assembler :: Slide 68 of 78

The Linker (MPLINK)

David Rye :: MTRX 3700 MPASM Assembler :: Slide 69 of 78

The Linker — MPLINK

* Locates code and data — Given relocatable object
code and linker script, places code and data in
memory

= Resolves addresses — calculates absolute addresses
of external object modules

= Generates an executable —a .HEX file of specified
format

= Configures (software) stack size and location (in C)
= |dentifies address conflicts

* Produces symbolic debug information — allows the
use of symbols for variables, functions, rather than
addresses.

David Rye :: MTRX 3700 MPASM Assembler :: Slide 70 of 78

MPLINK Inputs

= _0 — Relocatable object files

= _l1b —Collections of relocatable object files

» Usually grouped in a modular fashion
= Only used modules are linked into the executable

= _IKr —Linker script files tell the linker

= What files to link
» Range of valid memory addresses for a particular target

David Rye :: MTRX 3700 MPASM Assembler :: Slide 71 of 78

MPLINK Outputs

= _heX - Binary executable file
» |[ntel HEX format / 8-bit split format / 32-bit HEX format
= No debug information

= _cof -Binary executable file in COFF
(Common Object File Format
= Also contains symbolic debug information

= _map - Load map, showing memory use after linking
= |dentify absolute addresses of globals, functions

David Rye :: MTRX 3700 MPASM Assembler :: Slide 72 of 78

Linker Script File (xxx. 1Kr)

// Sample linker command file for the PIC18F452 processor
// when used **with***** the MPLAB I1CD2

Search // Search for Libraries in the current directory.
path > LIBPATH

Names of different
CODE segments

// CODEPAGE defined memory regions are in Program M
// program code, constants (including const
// of initialised variables.

y, and are used for
strings), and the initial values

NAME=vectors “< START=0x000000 END=0x000029 PROTECTED Only usable
CODEPAGE NAME=page START=0x00002A END=0x007DBF by code that
CODEPAGE NAME=debug START=0x007DCO END=0x007FFF PROTECTED L/ requests it
CODE CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
#pragma codecopepAaGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xFOOOFF PROTECTED

David Rye :: MTRX 3700 MPASM Assembler :: Slide 73 of 78

Linker Script File (xxx. Ikr) (continued)

// ACCESSBANK defined memory regions in Access RAM, used for data (variables).
// DATABANK defined memory regions in Banked RAM, used for data (variables).
//_The names gprO, grpl, etc here are **arbitrary**.

ACCESSBANKDNAME=accessram START=0x000 END=0x07F
DATABANK _ NAME=gpro START=0x080 END=0XOFF
DATABANK NAME=gpri START=0x100 END=Ox1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
Access RAM prasank NAME=gpra START=0x400 END=OXA4FF
DATABANK NAME=gpr5 START=0x500 END=0x5F3

DATABANK NAME=dbgspr START=0x5F4 END=0x5FF PROTECTED
ACCESSBANK)ONAME=accesssfr START=0xF80 END=0OxFFF PROTECTED

David Rye :: MTRX 3700 MPASM Assembler :: Slide 74 of 78

Linker Script File (xxx. Ikr) (continued)

// Logical sections specify which of the memory regions defined above should

// be used for a portion of relocatable code generated from a named section in
// the source code. Each SECTION directive defines a name for previously define
// memory region. This defined name can be referenced from the user’s code.
SECTION NAME=MAINCODE ROM=page

SECTION NAME=PAGE2 RAM=gpr2

// Code sections are referred to in user code using (for example)
// in assembler:

// MAINCODE CODE

// or in C:

// #pragma idata PAGE2 these names used in code

David Rye :: MTRX 3700 MPASM Assembler :: Slide 75 of 78

Linker Usage

= See MPLINK User’'s Manual for

= Much more detall
= Many examples

David Rye :: MTRX 3700 MPASM Assembler :: Slide 76 of 78

The Librarian (MPLIB)

David Rye :: MTRX 3700 MPASM Assembler :: Slide 77 of 78

The Libraritan — MPLIB

= Allows construction & maintenance of object libraries
* Runs from the command line (DOS Window)

= Syntax iIs
mplib [/q] /{ctdrx} Library [Member...]
where
* g: Quiet mode
- Create Library with Member|[s]
- List table showing Library members
- Delete Member[s] from Library
- Add/replace Member[s] in Library
- Extract Member[s] from Library

m
X 5 QO = 0O

David Rye :: MTRX 3700 MPASM Assembler :: Slide 78 of 78

