
flat assembler 1.73
Programmer’s Manual

Tomasz Grysztar

2

Chapter 1

Introduction

This chapter contains all the most important information you need to begin using the
flat assembler. If you are experienced assembly language programmer, you should read
at least this chapter before using this compiler.

1.1 Compiler overview

Flat assembler is a fast assembly language compiler for the x86 architecture processors,
which does multiple passes to optimize the size of generated machine code. It is self–
compilable and versions for different operating systems are provided. They are designed
to be used from the system command line and they should not differ in behavior.

This document describes also the IDE version designed for the Windows system,
which uses the graphical interface instead of console and has the integrated editor. But
from the compilation point of view it has exactly the same functionality as all the console
versions, and so later parts (beginning from 1.2) of this document are common with other
releases. The executable of the IDE version is called fasmw.exe, while fasm.exe is the
command line version.

1.1.1 System requirements

All versions require the x86 architecture 32–bit processor (at least 80386), although they
can produce programs for the x86 architecture 16–bit processors, too. Windows console
version requires any Win32 operating system, while Windows GUI version requires the
Win32 GUI system version 4.0 or higher, so it should run on all systems compatible
with Windows 95.

The example source provided with this version require you have environment variable
INCLUDE set to the path of the include directory, which is the part of flat assembler
package. If such variable already exists in your system and contains paths used by some
other program, it’s enough to add the new path to it (the different paths should be
separated with semicolons). If you don’t want to define such variable in the system,

3

4 CHAPTER 1. INTRODUCTION

or don’t know how to do it, you can set it for the flat assembler IDE only by editing
the fasmw.ini file in its directory (this file is created by fasmw.exe when it’s executed,
but you can also create it by yourself). In this case you should add the Include value
into the Environment section. For example, when you have unpacked the flat assem-
bler files into the c:\fasmw directory, you should put the following two lines into your
c:\fasmw\fasmw.ini file:

[Environment]

Include = c:\fasmw\include

If you don’t define the INCLUDE environment variable properly, you will have to manually
provide the full path to the Win32 includes in every program you want to compile.

1.1.2 Compiler usage

To start working with flat assembler, simply double click on the icon of fasmw.exe file,
or drag the icon of your source file onto it. You can also later open new source files
with the Open command from the File menu, or by dragging the files into the editor
window. You can have multiple source files opened at one time, each one is represented
by one tab button at the bottom of the editor window. To select file for editing, click
on the corresponding tab with left mouse button. Compiler by default operates on the
file you are currently editing, but you can force it to always operate on some particular
file by clicking the appropriate tab with right mouse button and selecting the Assign
command. Only single file can be assigned to compiler at one time.

When your source file is ready, you can execute the compiler with Compile command
from the Run menu. When the compilation is successful, compiler will display the
summary of compilation process; otherwise it will display the information about error
that occurred. Compilation summary includes the information of how many passes was
done, how much time it took, and how many bytes were written into destination file.
It also contains a text field called Display, in which will appear any messages from the
display directives in source (see 2.2.5). Error summary consists at least of the error
message and a text field Display, which has the same purpose as above. If error is related
to some specific line of source code, the summary contains also a text field Instruction,
which contains the preprocessed form of instruction that caused an error if the error
occured after the preprocessor stage (otherwise it’s empty) and the Source list, which
shows location of all the source lines related to this error, when you select a line from
this list, it will be at the same time selected in the editor window (if file which contains
that line is not loaded, it will be automatically added).

The Run command also executes the compiler, and in case of successful compilation
it runs the compiled program if only it is one of the formats that can be run in Windows
environment, otherwise you’ll get a message that such type of file cannot be executed.
If an error occurs, compiler displays information about it in the same form as if the
Compile command was used.

1.1. COMPILER OVERVIEW 5

If the compiler runs out of memory, you can increase the memory allocation in the
Compiler setup dialog, which you can start from the Options menu. You can specify
there the amount of kilobytes that the compiler should use, and also the priority of the
compiler’s thread.

If you want only one instance of program to be running, add the OneInstanceOnly=1
setting to the Options section of the fasmw.ini file.

1.1.3 Keyboard commands in editor

This section lists the all keyboard commands available when working with editor. Except
for the keys listed as specific ones, they are common with the DOS IDE for flat assembler.

Movement:

Left arrow move one character left
Right arrow move one character right
Up arrow move one line up
Down arrow move one line down
Ctrl+Left arrow move one word left
Ctrl+Right arrow move one word right
Home move to the beginning of line
End move to the end of line
PageUp move one page up
PageDown move one page down
Ctrl+Home move to the first line of page
Ctrl+End move to the last line of page
Ctrl+PageUp move to the first line of text
Ctrl+PageDown move to the last line of text

Each of the movement keys pressed with Shift selects text.

Editing:

Insert switch insert/overwrite mode
Alt+Insert switch horizontal/vertical blocks
Delete delete current character
Backspace delete previous character
Ctrl+Backspace delete previous word
Alt+Backspace undo previous operation (also Ctrl+Z)
Alt+Shift+Backspace redo previously undone operation (also Ctrl+Shift+Z)
Ctrl+Y delete current line
F6 duplicate current line

6 CHAPTER 1. INTRODUCTION

Block operations:

Ctrl+Insert copy block into clipboard (also Ctrl+C)
Shift+Insert paste block from the clipboard (also Ctrl+V)
Ctrl+Delete delete block
Shift+Delete cut block into clipboard (also Ctrl+X)
Ctrl+A select all text

Search:

F5 go to specified position (also Ctrl+G)
F7 find (also Ctrl+F)
Shift+F7 find next (also F3)
Ctrl+F7 replace (also Ctrl+H)

Compile:

F9 compile and run
Ctrl+F9 compile only
Shift+F9 assign current file as main file to compile
Ctrl+F8 compile and build symbols information

Other keys:

F2 save current file
Shift+F2 save file under a new name
F4 load file
Ctrl+N create new file
Ctrl+Tab switch to next file
Ctrl+Shift+Tab switch to previous file
Alt+[1-9] switch to file of given number
Esc close current file
Alt+X close all files and exit
Ctrl+F6 calculator
Alt+Left arrow scroll left
Alt+Right arrow scroll right
Alt+Up arrow scroll up
Alt+Down arrow scroll down

Specific keys:

1.1. COMPILER OVERVIEW 7

F1 search for keyword in selected help file
Alt+F1 contents of selected help file

1.1.4 Editor options

In the Options menu resides also a list of editor options, which may be turned on or off
and affect the behavior of editor. This section describes these options.

Secure selection – when you turn this option on, the selected block never gets deleted
when you start typing. When you do any text–changing operation, the selection is
cancelled, not affecting in any way the text that was selected, and then the command
is performed. When this option is off and you start typing, the current selection is
discarded, also Del key simply deletes the selected block (when secure selection is on
you have to use Ctrl+Del).

Automatic brackets – when you type any of the opening brackets, the closing one is
automatically put just after caret.

Automatic indents – when you press Enter to start a new line, the caret is moved into
the new line at the same position, where in the previous line the first non-blank character
is placed. If you are breaking the line, and there were some non-blank characters after
the caret when you pressed Enter, they are moved into the new line at the position of
indent, any blank characters that were between the caret and them are ignored.

Smart tabulation – when you press Tab, it moves you to the position just below
the next sequence of non-blank characters in the line above starting from the position
just above where you were. If no such sequence is found in line above, the standard
tabulation size of 8 characters is used.

Optimal fill on saving – with this option enabled, when the file is saved, all blank
areas are filled with the optimal combination of tabs and spaces to get the smaller file
size. If this option is off, the blank areas are saved as filled with spaces (but the spaces
at the ends of lines are not saved).

Revive dead keys – when this option is turned on, it disables inside the editor the
so–called dead keys (keys that don’t immediately generate the character, but wait for
a next key to decide what character to put – usually you enter the character of a dead
key by pressing a space key after it). It may be useful if key for entering some of the
characters that you need to enter often into assembly source is a dead key and you don’t
need this functionality for writing programs.

Time scrolling – with this option enabled it is possible to use mouse wheel to scroll
through the undo/redo space while either AltGr or Ctrl+Alt keys are pressed.

1.1.5 Executing compiler from command line

To perform compilation from the command line you need to execute the fasm.exe

executable, providing two parameters – first should be name of source file, second should
be name of destination file. If no second parameter is given, the name for output file

8 CHAPTER 1. INTRODUCTION

will be guessed automatically. After displaying short information about the program
name and version, compiler will read the data from source file and compile it. When the
compilation is successful, compiler will write the generated code to the destination file
and display the summary of compilation process; otherwise it will display the information
about error that occurred.

The source file should be a text file, and can be created in any text editor. Line
breaks are accepted in both DOS and Unix standards, tabulators are treated as spaces.

In the command line you can also include -m option followed by a number, which
specifies how many kilobytes of memory flat assembler should maximally use. In case
of DOS version this options limits only the usage of extended memory. The -p option
followed by a number can be used to specify the limit for number of passes the assembler
performs. If code cannot be generated within specified amount of passes, the assembly
will be terminated with an error message. The maximum value of this setting is 65536,
while the default limit, used when no such option is included in command line, is 100.
It is also possible to limit the number of passes the assembler performs, with the -p

option followed by a number specifying the maximum number of passes.
There are no command line options that would affect the output of compiler, flat

assembler requires only the source code to include the information it really needs. For
example, to specify output format you specify it by using the format directive at the
beginning of source.

1.1.6 Command line compiler messages

As it is stated above, after the successful compilation, the compiler displays the compi-
lation summary. It includes the information of how many passes was done, how much
time it took, and how many bytes were written into the destination file. The following
is an example of the compilation summary:

flat assembler version 1.72 (16384 kilobytes memory)

38 passes, 5.3 seconds, 77824 bytes.

In case of error during the compilation process, the program will display an error mes-
sage. For example, when compiler can’t find the input file, it will display the following
message:

flat assembler version 1.72 (16384 kilobytes memory)

error: source file not found.

If the error is connected with a specific part of source code, the source line that caused
the error will be also displayed. Also placement of this line in the source is given to help
you finding this error, for example:

flat assembler version 1.72 (16384 kilobytes memory)

example.asm [3]:

1.2. ASSEMBLY SYNTAX 9

mob ax,1

error: illegal instruction.

It means that in the third line of the example.asm file compiler has encountered an
unrecognized instruction. When the line that caused error contains a macroinstruction,
also the line in macroinstruction definition that generated the erroneous instruction is
displayed:

flat assembler version 1.72 (16384 kilobytes memory)

example.asm [6]:

stoschar 7

example.asm [3] stoschar [1]:

mob al,char

error: illegal instruction.

It means that the macroinstruction in the sixth line of the example.asm file generated
an unrecognized instruction with the first line of its definition.

1.1.7 Output formats

By default, when there is no format directive in source file, flat assembler simply puts
generated instruction codes into output, creating this way flat binary file. By default
it generates 16–bit code, but you can always turn it into the 16–bit or 32–bit mode by
using use16 or use32 directive. Some of the output formats switch into 32–bit mode,
when selected – more information about formats which you can choose can be found in
2.4.

The extension of destination file is chosen automatically by compiler, depending on
the selected output format.

All output code is always in the order in which it was entered into the source file.

1.2 Assembly syntax

The information provided below is intended mainly for the assembler programmers that
have been using some other assembly compilers before. If you are beginner, you should
look for the assembly programming tutorials.

Flat assembler by default uses the Intel syntax for the assembly instructions, al-
though you can customize it using the preprocessor capabilities (macroinstructions and
symbolic constants). It also has its own set of the directives – the instructions for
compiler.

All symbols defined inside the sources are case–sensitive.

10 CHAPTER 1. INTRODUCTION

Operator Bits Bytes

byte 8 1
word 16 2
dword 32 4
fword 48 6
pword 48 6
qword 64 8
tbyte 80 10
tword 80 10
dqword 128 16
xword 128 16
qqword 256 32
yword 256 32

dqqword 512 64
zword 512 64

Table 1.8: Size operators.

1.2.1 Instruction syntax

Instructions in assembly language are separated by line breaks, and one instruction
is expected to fill the one line of text. If a line contains a semicolon, except for the
semicolons inside the quoted strings, the rest of this line is the comment and compiler
ignores it. If a line ends with \ character (eventually the semicolon and comment may
follow it), the next line is attached at this point.

Each line in source is the sequence of items, which may be one of the three types. One
type are the symbol characters, which are the special characters that are individual items
even when are not spaced from the other ones. Any of the +-*/=<>()[]{}:,|&~#‘ is the
symbol character. The sequence of other characters, separated from other items with
either blank spaces or symbol characters, is a symbol. If the first character of symbol is
either a single or double quote, it integrates any sequence of characters following it, even
the special ones, into a quoted string, which should end with the same character, with
which it began (the single or double quote) – however if there are two such characters
in a row (without any other character between them), they are integrated into quoted
string as just one of them and the quoted string continues then. The symbols other
than symbol characters and quoted strings can be used as names, so are also called the
name symbols.

Every instruction consists of the mnemonic and the various number of operands,
separated with commas. The operand can be register, immediate value or a data ad-
dressed in memory, it can also be preceded by size operator to define or override its size
(table 1.8). Names of available registers you can find in table 1.9, their sizes cannot be

1.2. ASSEMBLY SYNTAX 11

Type Bits

8 al cl dl bl ah ch dh bh

General 16 ax cx dx bx sp bp si di

32 eax ecx edx ebx esp ebp esi edi

Segment 16 es cs ss ds fs gs

Control 32 cr0 cr2 cr3 cr4

Debug 32 dr0 dr1 dr2 dr3 dr6 dr7

FPU 80 st0 st1 st2 st3 st4 st5 st6 st7

MMX 64 mm0 mm1 mm2 mm3 mm4 mm5 mm6 mm7

SSE 128 xmm0 xmm1 xmm2 xmm3 xmm4 xmm5 xmm6 xmm7

AVX 256 ymm0 ymm1 ymm2 ymm3 ymm4 ymm5 ymm6 ymm7

AVX-512 512 zmm0 zmm1 zmm2 zmm3 zmm4 zmm5 zmm6 zmm7

Opmask 64 k0 k1 k2 k3 k4 k5 k6 k7

Bounds 128 bnd0 bnd1 bnd2 bnd3

Table 1.9: Registers.

overridden. Immediate value can be specified by any numerical expression.
When operand is a data in memory, the address of that data (also any numerical ex-

pression, but it may contain registers) should be enclosed in square brackets or preceded
by ptr operator. For example instruction mov eax,3 will put the immediate value 3 into
the eax register, instruction mov eax,[7] will put the 32–bit value from the address
7 into eax and the instruction mov byte [7],3 will put the immediate value 3 into
the byte at address 7, it can also be written as mov byte ptr 7,3. To specify which
segment register should be used for addressing, segment register name followed with a
colon should be put just before the address value (inside the square brackets or after
the ptr operator).

1.2.2 Data definitions

To define data or reserve a space for it, use one of the directives listed in table 1.10.
The data definition directive should be followed by one or more of numerical expres-
sions, separated with commas. These expressions define the values for data cells of size
depending on which directive is used. For example db 1,2,3 will define the three bytes
of values 1, 2 and 3 respectively.

The db and du directives also accept the quoted string values of any length, which
will be converted into chain of bytes when db is used and into chain of words with zeroed
high byte when du is used. For example db ’abc’ will define the three bytes of values
61, 62 and 63.

The dp directive and its synonym df accept the values consisting of two numerical
expressions separated with colon, the first value will become the high word and the

12 CHAPTER 1. INTRODUCTION

second value will become the low double word of the far pointer value. Also dd accepts
such pointers consisting of two word values separated with colon, and dt accepts the
word and quad word value separated with colon, the quad word is stored first. The
dt directive with single expression as parameter accepts only floating point values and
creates data in FPU double extended precision format.

Any of the above directive allows the usage of special dup operator to make multiple
copies of given values. The count of duplicates should precede this operator and the value
to duplicate should follow – it can even be the chain of values separated with commas,
but such set of values needs to be enclosed with parenthesis, like db 5 dup (1,2), which
defines five copies of the given two byte sequence.

The file is a special directive and its syntax is different. This directive includes a
chain of bytes from file and it should be followed by the quoted file name, then optionally
numerical expression specifying offset in file preceded by the colon, then – also optionally
– comma and numerical expression specifying count of bytes to include (if no count is
specified, all data up to the end of file is included). For example file ’data.bin’ will
include the whole file as binary data and file ’data.bin’:10h,4 will include only four
bytes starting at offset 10h.

Size Define Reserve
(bytes) data data

1 db rb

file

2 dw rw

du

4 dd rd

6 dp rp

df rf

8 dq rq

10 dt rt

Table 1.10: Data directives.

The data reservation directive should be followed by only one numerical expression,
and this value defines how many cells of the specified size should be reserved. All data
definition directives also accept the ? value, which means that this cell should not be
initialized to any value and the effect is the same as by using the data reservation
directive. The uninitialized data may not be included in the output file, so its values
should be always considered unknown.

1.2. ASSEMBLY SYNTAX 13

1.2.3 Constants and labels

In the numerical expressions you can also use constants or labels instead of numbers.
To define the constant or label you should use the specific directives. Each label can be
defined only once and it is accessible from the any place of source (even before it was
defined). Constant can be redefined many times, but in this case it is accessible only
after it was defined, and is always equal to the value from last definition before the place
where it’s used. When a constant is defined only once in source, it is – like the label –
accessible from anywhere.

The definition of constant consists of name of the constant followed by the = character
and numerical expression, which after calculation will become the value of constant.
This value is always calculated at the time the constant is defined. For example you
can define count constant by using the directive count = 17, and then use it in the
assembly instructions, like mov cx,count – which will become mov cx,17 during the
compilation process.

There are different ways to define labels. The simplest is to follow the name of label
by the colon, this directive can even be followed by the other instruction in the same
line. It defines the label whose value is equal to offset of the point where it’s defined.
This method is usually used to label the places in code. The other way is to follow the
name of label (without a colon) by some data directive. It defines the label with value
equal to offset of the beginning of defined data, and remembered as a label for data with
cell size as specified for that data directive in table 1.10.

The label can be treated as constant of value equal to offset of labeled code or data.
For example when you define data using the labeled directive char db 224, to put the
offset of this data into bx register you should use mov bx,char instruction, and to put
the value of byte addressed by char label to dl register, you should use mov dl,[char]

(or mov dl,ptr char). But when you try to assemble mov ax,[char], it will cause
an error, because fasm compares the sizes of operands, which should be equal. You
can force assembling that instruction by using size override: mov ax,word [char], but
remember that this instruction will read the two bytes beginning at char address, while
it was defined as a one byte.

The last and the most flexible way to define labels is to use label directive. This
directive should be followed by the name of label, then optionally size operator and then
– also optionally at operator and the numerical expression defining the address at which
this label should be defined. For example label wchar word at char will define a new
label for the 16–bit data at the address of char. Now the instruction mov ax,[wchar]

will be after compilation the same as mov ax,word [char]. If no address is specified,
label directive defines the label at current offset. Thus mov [wchar],57568 will copy
two bytes while mov [char],224 will copy one byte to the same address.

The label whose name begins with dot is treated as local label, and its name is
attached to the name of last global label (with name beginning with anything but dot)
to make the full name of this label. So you can use the short name (beginning with dot)

14 CHAPTER 1. INTRODUCTION

of this label anywhere before the next global label is defined, and in the other places
you have to use the full name. Label beginning with two dots are the exception – they
are like global, but they don’t become the new prefix for local labels.

The @@ name means anonymous label, you can have defined many of them in the
source. Symbol @b (or equivalent @r) references the nearest preceding anonymous label,
symbol @f references the nearest following anonymous label. These special symbol are
case–insensitive.

1.2.4 Numerical expressions

In the above examples all the numerical expressions were the simple numbers, constants
or labels. But they can be more complex, by using the arithmetical or logical operators
for calculations at compile time. All these operators with their priority values are listed
in table 1.11. The operations with higher priority value will be calculated first, you can
of course change this behavior by putting some parts of expression into parenthesis. The
+, -, * and / are standard arithmetical operations, mod calculates the remainder from
division. The and, or, xor, shl, shr, bsf, bsr and not perform the same bit–logical
operations as assembly instructions of those names. The rva and plt are special unary
operators that perform conversions between different kinds of addresses, they can be
used only with few of the output formats and their meaning may vary (see 2.4).

The arithmetical and bit–logical calculations are usually processed as if they operated
on infinite precision 2–adic numbers, and assembler signalizes an overflow error if because
of its limitations it is not table to perform the required calculation, or if the result is
too large number to fit in either signed or unsigned range for the destination unit size.

The numbers in the expression are by default treated as a decimal, binary numbers
should have the b letter attached at the end, octal number should end with o letter,
hexadecimal numbers should begin with 0x characters (like in C language) or with the $
character (like in Pascal language) or they should end with h letter. Also quoted string,
when encountered in expression, will be converted into number – the first character will
become the least significant byte of number.

The numerical expression used as an address value can also contain any of general
registers used for addressing, they can be added and multiplied by appropriate values, as
it is allowed for x86 architecture instructions. The numerical calculations inside address
definition by default operate with target size assumed to be the same as the current
bitness of code, even if generated instruction encoding will use a different address size.

There are also some special symbols that can be used inside the numerical expression.
First is $, which is always equal to the value of current offset, while $$ is equal to base
address of current addressing space. The other one is %, which is the number of current
repeat in parts of code that are repeated using some special directives (see 2.2) and zero
anywhere else. There’s also %t symbol, which is always equal to the current time stamp.

Any numerical expression can also consist of single floating point value (flat assem-
bler does not allow any floating point operations at compilation time) in the scientific

1.2. ASSEMBLY SYNTAX 15

Priority Operators

0 +

-

1 *

/

2 mod

3 and

or

xor

4 shl

shr

5 not

6 bsf

bsr

7 rva

plt

Table 1.11: Arithmetical and bit–logical operators by priority.

notation, they can end with the f letter to be recognized, otherwise they should contain
at least one of the . or E characters. So 1.0, 1E0 and 1f define the same floating point
value, while simple 1 defines an integer value.

1.2.5 Jumps and calls

The operand of any jump or call instruction can be preceded not only by the size
operator, but also by one of the operators specifying type of the jump: short, near or
far. For example, when assembler is in 16–bit mode, instruction jmp dword [0] will
become the far jump and when assembler is in 32–bit mode, it will become the near
jump. To force this instruction to be treated differently, use the jmp near dword [0]

or jmp far dword [0] form.

When operand of near jump is the immediate value, assembler will generate the
shortest variant of this jump instruction if possible (but will not create 32–bit instruction
in 16–bit mode nor 16–bit instruction in 32–bit mode, unless there is a size operator
stating it). By specifying the jump type you can force it to always generate long variant
(for example jmp near 0) or to always generate short variant and terminate with an
error when it’s impossible (for example jmp short 0).

16 CHAPTER 1. INTRODUCTION

1.2.6 Size settings

When instruction uses some memory addressing, by default the smallest form of instruc-
tion is generated by using the short displacement if only address value fits in the range.
This can be overridden using the word or dword operator before the address inside the
square brackets (or after the ptr operator), which forces the long displacement of ap-
propriate size to be made. In case when address is not relative to any registers, those
operators allow also to choose the appropriate mode of absolute addressing.

Instructions adc, add, and, cmp, or, sbb, sub and xor with first operand being 16–bit
or 32–bit are by default generated in shortened 8–bit form when the second operand is
immediate value fitting in the range for signed 8-bit values. It also can be overridden
by putting the word or dword operator before the immediate value. The similar rules
applies to the imul instruction with the last operand being immediate value.

Immediate value as an operand for push instruction without a size operator is by
default treated as a word value if assembler is in 16–bit mode and as a double word value
if assembler is in 32–bit mode, shorter 8–bit form of this instruction is used if possible,
word or dword size operator forces the push instruction to be generated in longer form
for specified size. pushw and pushd mnemonics force assembler to generate 16-bit or
32–bit code without forcing it to use the longer form of instruction.

Chapter 2

Instruction set

This chapter provides the detailed information about the instructions and directives
supported by flat assembler. Directives for defining labels were already discussed in
1.2.3, all other directives will be described later in this chapter.

2.1 The x86 architecture instructions

In this section you can find both the information about the syntax and purpose the
assembly language instructions. If you need more technical information, look for the
Intel Architecture Software Developer’s Manual.

Assembly instructions consist of the mnemonic (instruction’s name) and from zero
to three operands. If there are two or more operands, usually first is the destination
operand and second is the source operand. Each operand can be register, memory or
immediate value (see 1.2 for details about syntax of operands). After the description
of each instruction there are examples of different combinations of operands, if the
instruction has any.

Some instructions act as prefixes and can be followed by other instruction in the same
line, and there can be more than one prefix in a line. Each name of the segment register
is also a mnemonic of instruction prefix, altough it is recommended to use segment
overrides inside the square brackets instead of these prefixes.

2.1.1 Data movement instructions

mov transfers a byte, word or double word from the source operand to the destination
operand. It can transfer data between general registers, from the general register to
memory, or from memory to general register, but it cannot move from memory to
memory. It can also transfer an immediate value to general register or memory, segment
register to general register or memory, general register or memory to segment register,
control or debug register to general register and general register to control or debug
register. The mov can be assembled only if the size of source operand and size of

17

18 CHAPTER 2. INSTRUCTION SET

destination operand are the same. Below are the examples for each of the allowed
combinations:

mov bx,ax ; general register to general register

mov [char],al ; general register to memory

mov bl,[char] ; memory to general register

mov dl,32 ; immediate value to general register

mov [char],32 ; immediate value to memory

mov ax,ds ; segment register to general register

mov [bx],ds ; segment register to memory

mov ds,ax ; general register to segment register

mov ds,[bx] ; memory to segment register

mov eax,cr0 ; control register to general register

mov cr3,ebx ; general register to control register

xchg swaps the contents of two operands. It can swap two byte operands, two
word operands or two double word operands. Order of operands is not important. The
operands may be two general registers, or general register with memory. For example:

xchg ax,bx ; swap two general registers

xchg al,[char] ; swap register with memory

push decrements the stack frame pointer (esp register), then transfers the operand to
the top of stack indicated by esp. The operand can be memory, general register, segment
register or immediate value of word or double word size. If operand is an immediate
value and no size is specified, it is by default treated as a word value if assembler is
in 16–bit mode and as a double word value if assembler is in 32–bit mode. pushw and
pushd mnemonics are variants of this instruction that store the values of word or double
word size respectively. If more operands follow in the same line (separated only with
spaces, not commas), compiler will assemble chain of the push instructions with these
operands. The examples are with single operands:

push ax ; store general register

push es ; store segment register

pushw [bx] ; store memory

push 1000h ; store immediate value

pusha saves the contents of the eight general register on the stack. This instruction
has no operands. There are two version of this instruction, one 16–bit and one 32–bit,
assembler automatically generates the right version for current mode, but it can be
overridden by using pushaw or pushad mnemonic to always get the 16–bit or 32–bit
version. The 16–bit version of this instruction pushes general registers on the stack in
the following order: ax, cx, dx, bx, the initial value of sp before ax was pushed, bp, si
and di. The 32–bit version pushes equivalent 32–bit general registers in the same order.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 19

pop transfers the word or double word at the current top of stack to the destination
operand, and then increments esp to point to the new top of stack. The operand can be
memory, general register or segment register. popw and popd mnemonics are variants of
this instruction for restoring the values of word or double word size respectively. If more
operands separated with spaces follow in the same line, compiler will assemble chain of
the pop instructions with these operands.

pop bx ; restore general register

pop ds ; restore segment register

popw [si] ; restore memory

popa restores the registers saved on the stack by pusha instruction, except for the
saved value of sp (or esp), which is ignored. This instruction has no operands. To force
assembling 16–bit or 32–bit version of this instruction use popaw or popad mnemonic.

2.1.2 Type conversion instructions

The type conversion instructions convert bytes into words, words into double words, and
double words into quad words. These conversions can be done using the sign extension
or zero extension. The sign extension fills the extra bits of the larger item with the
value of the sign bit of the smaller item, the zero extension simply fills them with zeros.

cwd and cdq double the size of value ax or eax register respectively and store the
extra bits into the dx or edx register. The conversion is done using the sign extension.
These instructions have no operands.

cbw extends the sign of the byte in al throughout ax, and cwde extends the sign of
the word in ax throughout eax. These instructions also have no operands.

movsx converts a byte to word or double word and a word to double word using
the sign extension. movzx does the same, but it uses the zero extension. The source
operand can be general register or memory, while the destination operand must be a
general register. For example:

movsx ax,al ; byte register to word register

movsx edx,dl ; byte register to double word register

movsx eax,ax ; word register to double word register

movsx ax,byte [bx] ; byte memory to word register

movsx edx,byte [bx] ; byte memory to double word register

movsx eax,word [bx] ; word memory to double word register

2.1.3 Binary arithmetic instructions

add replaces the destination operand with the sum of the source and destination operands
and sets CF if overflow has occurred. The operands may be bytes, words or double words.
The destination operand can be general register or memory, the source operand can be

20 CHAPTER 2. INSTRUCTION SET

general register or immediate value, it can also be memory if the destination operand is
register.

add ax,bx ; add register to register

add ax,[si] ; add memory to register

add [di],al ; add register to memory

add al,48 ; add immediate value to register

add [char],48 ; add immediate value to memory

adc sums the operands, adds one if CF is set, and replaces the destination operand
with the result. Rules for the operands are the same as for the add instruction. An add

followed by multiple adc instructions can be used to add numbers longer than 32 bits.
inc adds one to the operand, it does not affect CF. The operand can be a general

register or memory, and the size of the operand can be byte, word or double word.

inc ax ; increment register by one

inc byte [bx] ; increment memory by one

sub subtracts the source operand from the destination operand and replaces the
destination operand with the result. If a borrow is required, the CF is set. Rules for
the operands are the same as for the add instruction.

sbb subtracts the source operand from the destination operand, subtracts one if CF
is set, and stores the result to the destination operand. Rules for the operands are the
same as for the add instruction. A sub followed by multiple sbb instructions may be
used to subtract numbers longer than 32 bits.

dec subtracts one from the operand, it does not affect CF. Rules for the operand are
the same as for the inc instruction.

cmp subtracts the source operand from the destination operand. It updates the flags
as the sub instruction, but does not alter the source and destination operands. Rules
for the operands are the same as for the sub instruction.

neg subtracts a signed integer operand from zero. The effect of this instructon is to
reverse the sign of the operand from positive to negative or from negative to positive.
Rules for the operand are the same as for the inc instruction.

xadd exchanges the destination operand with the source operand, then loads the
sum of the two values into the destination operand. The destination operand may be a
general register or memory, the source operand must be a general register.

All the above binary arithmetic instructions update SF, ZF, PF and OF flags. SF
is always set to the same value as the result’s sign bit, ZF is set when all the bits of
result are zero, PF is set when low order eight bits of result contain an even number of
set bits, OF is set if result is too large for a positive number or too small for a negative
number (excluding sign bit) to fit in destination operand.

mul performs an unsigned multiplication of the operand and the accumulator. If the
operand is a byte, the processor multiplies it by the contents of al and returns the 16–bit
result to ah and al. If the operand is a word, the processor multiplies it by the contents

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 21

of ax and returns the 32–bit result to dx and ax. If the operand is a double word, the
processor multiplies it by the contents of eax and returns the 64–bit result in edx and
eax. mul sets CF and OF when the upper half of the result is nonzero, otherwise they
are cleared. Rules for the operand are the same as for the inc instruction.

imul performs a signed multiplication operation. This instruction has three vari-
ations. First has one operand and behaves in the same way as the mul instruction.
Second has two operands, in this case destination operand is multiplied by the source
operand and the result replaces the destination operand. Destination operand must
be a general register, it can be word or double word, source operand can be general
register, memory or immediate value. Third form has three operands, the destination
operand must be a general register, word or double word in size, source operand can be
general register or memory, and third operand must be an immediate value. The source
operand is multiplied by the immediate value and the result is stored in the destination
register. All the three forms calculate the product to twice the size of operands and set
CF and OF when the upper half of the result is nonzero, but second and third form
truncate the product to the size of operands. So second and third forms can be also
used for unsigned operands because, whether the operands are signed or unsigned, the
lower half of the product is the same. Below are the examples for all three forms:

imul bl ; accumulator by register

imul word [si] ; accumulator by memory

imul bx,cx ; register by register

imul bx,[si] ; register by memory

imul bx,10 ; register by immediate value

imul ax,bx,10 ; register by immediate value to register

imul ax,[si],10 ; memory by immediate value to register

div performs an unsigned division of the accumulator by the operand. The dividend
(the accumulator) is twice the size of the divisor (the operand), the quotient and re-
mainder have the same size as the divisor. If divisor is byte, the dividend is taken from
ax register, the quotient is stored in al and the remainder is stored in ah. If divisor is
word, the upper half of dividend is taken from dx, the lower half of dividend is taken
from ax, the quotient is stored in ax and the remainder is stored in dx. If divisor is
double word, the upper half of dividend is taken from edx, the lower half of dividend is
taken from eax, the quotient is stored in eax and the remainder is stored in edx. Rules
for the operand are the same as for the mul instruction.

idiv performs a signed division of the accumulator by the operand. It uses the same
registers as the div instruction, and the rules for the operand are the same.

2.1.4 Decimal arithmetic instructions

Decimal arithmetic is performed by combining the binary arithmetic instructions (al-
ready described in the prior section) with the decimal arithmetic instructions. The

22 CHAPTER 2. INSTRUCTION SET

decimal arithmetic instructions are used to adjust the results of a previous binary arith-
metic operation to produce a valid packed or unpacked decimal result, or to adjust the
inputs to a subsequent binary arithmetic operation so the operation will produce a valid
packed or unpacked decimal result.

daa adjusts the result of adding two valid packed decimal operands in al. daa must
always follow the addition of two pairs of packed decimal numbers (one digit in each
half–byte) to obtain a pair of valid packed decimal digits as results. The carry flag is
set if carry was needed. This instruction has no operands.

das adjusts the result of subtracting two valid packed decimal operands in al. das

must always follow the subtraction of one pair of packed decimal numbers (one digit in
each half–byte) from another to obtain a pair of valid packed decimal digits as results.
The carry flag is set if a borrow was needed. This instruction has no operands.

aaa changes the contents of register al to a valid unpacked decimal number, and
zeroes the top four bits. aaa must always follow the addition of two unpacked decimal
operands in al. The carry flag is set and ah is incremented if a carry is necessary. This
instruction has no operands.

aas changes the contents of register al to a valid unpacked decimal number, and
zeroes the top four bits. aas must always follow the subtraction of one unpacked decimal
operand from another in al. The carry flag is set and ah decremented if a borrow is
necessary. This instruction has no operands.

aam corrects the result of a multiplication of two valid unpacked decimal numbers.
aam must always follow the multiplication of two decimal numbers to produce a valid
decimal result. The high order digit is left in ah, the low order digit in al. The gener-
alized version of this instruction allows adjustment of the contents of the ax to create
two unpacked digits of any number base. The standard version of this instruction has
no operands, the generalized version has one operand – an immediate value specifying
the number base for the created digits.

aad modifies the numerator in ah and ah to prepare for the division of two valid
unpacked decimal operands so that the quotient produced by the division will be a
valid unpacked decimal number. ah should contain the high order digit and al the low
order digit. This instruction adjusts the value and places the result in al, while ah

will contain zero. The generalized version of this instruction allows adjustment of two
unpacked digits of any number base. Rules for the operand are the same as for the aam

instruction.

2.1.5 Logical instructions

not inverts the bits in the specified operand to form a one’s complement of the operand.
It has no effect on the flags. Rules for the operand are the same as for the inc instruction.

and, or and xor instructions perform the standard logical operations. They update
the SF, ZF and PF flags. Rules for the operands are the same as for the add instruction.

bt, bts, btr and btc instructions operate on a single bit which can be in memory or

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 23

in a general register. The location of the bit is specified as an offset from the low order
end of the operand. The value of the offset is the taken from the second operand, it
either may be an immediate byte or a general register. These instructions first assign the
value of the selected bit to CF. bt instruction does nothing more, bts sets the selected
bit to 1, btr resets the selected bit to 0, btc changes the bit to its complement. The
first operand can be word or double word.

bt ax,15 ; test bit in register

bts word [bx],15 ; test and set bit in memory

btr ax,cx ; test and reset bit in register

btc word [bx],cx ; test and complement bit in memory

bsf and bsr instructions scan a word or double word for first set bit and store the
index of this bit into destination operand, which must be general register. The bit
string being scanned is specified by source operand, it may be either general register or
memory. The ZF flag is set if the entire string is zero (no set bits are found); otherwise
it is cleared. If no set bit is found, the value of the destination register is undefined.
bsf from low order to high order (starting from bit index zero). bsr scans from high
order to low order (starting from bit index 15 of a word or index 31 of a double word).

bsf ax,bx ; scan register forward

bsr ax,[si] ; scan memory reverse

shl shifts the destination operand left by the number of bits specified in the second
operand. The destination operand can be byte, word, or double word general register
or memory. The second operand can be an immediate value or the cl register. The
processor shifts zeros in from the right (low order) side of the operand as bits exit from
the left side. The last bit that exited is stored in CF. sal is a synonym for shl.

shl al,1 ; shift register left by one bit

shl byte [bx],1 ; shift memory left by one bit

shl ax,cl ; shift register left by count from cl

shl word [bx],cl ; shift memory left by count from cl

shr and sar shift the destination operand right by the number of bits specified in
the second operand. Rules for operands are the same as for the shl instruction. shr

shifts zeros in from the left side of the operand as bits exit from the right side. The last
bit that exited is stored in CF. sar preserves the sign of the operand by shifting in zeros
on the left side if the value is positive or by shifting in ones if the value is negative.

shld shifts bits of the destination operand to the left by the number of bits specified
in third operand, while shifting high order bits from the source operand into the desti-
nation operand on the right. The source operand remains unmodified. The destination
operand can be a word or double word general register or memory, the source operand
must be a general register, third operand can be an immediate value or the cl register.

24 CHAPTER 2. INSTRUCTION SET

shld ax,bx,1 ; shift register left by one bit

shld [di],bx,1 ; shift memory left by one bit

shld ax,bx,cl ; shift register left by count from cl

shld [di],bx,cl ; shift memory left by count from cl

shrd shifts bits of the destination operand to the right, while shifting low order bits
from the source operand into the destination operand on the left. The source operand
remains unmodified. Rules for operands are the same as for the shld instruction.

rol and rcl rotate the byte, word or double word destination operand left by the
number of bits specified in the second operand. For each rotation specified, the high
order bit that exits from the left of the operand returns at the right to become the new
low order bit. rcl additionally puts in CF each high order bit that exits from the left
side of the operand before it returns to the operand as the low order bit on the next
rotation cycle. Rules for operands are the same as for the shl instruction.

ror and rcr rotate the byte, word or double word destination operand right by the
number of bits specified in the second operand. For each rotation specified, the low
order bit that exits from the right of the operand returns at the left to become the new
high order bit. rcr additionally puts in CF each low order bit that exits from the right
side of the operand before it returns to the operand as the high order bit on the next
rotation cycle. Rules for operands are the same as for the shl instruction.

test performs the same action as the and instruction, but it does not alter the
destination operand, only updates flags. Rules for the operands are the same as for the
and instruction.

bswap reverses the byte order of a 32–bit general register: bits 0 through 7 are
swapped with bits 24 through 31, and bits 8 through 15 are swapped with bits 16 through
23. This instruction is provided for converting little–endian values to big–endian format
and vice versa.

bswap edx ; swap bytes in register

2.1.6 Control transfer instructions

jmp unconditionally transfers control to the target location. The destination address can
be specified directly within the instruction or indirectly through a register or memory,
the acceptable size of this address depends on whether the jump is near or far (it can
be specified by preceding the operand with near or far operator) and whether the
instruction is 16–bit or 32–bit. Operand for near jump should be word size for 16–
bit instruction or the dword size for 32–bit instruction. Operand for far jump should
be dword size for 16–bit instruction or pword size for 32–bit instruction. A direct
jmp instruction includes the destination address as part of the instruction (and can be
preceded by short, near or far operator), the operand specifying address should be
the numerical expression for near or short jump, or two numerical expressions separated
with colon for far jump, the first specifies selector of segment, the second is the offset

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 25

within segment. The pword operator can be used to force the 32–bit far call, and dword

to force the 16-bit far call. An indirect jmp instruction obtains the destination address
indirectly through a register or a pointer variable, the operand should be general register
or memory. See also 1.2.5 for some more details.

jmp 100h ; direct near jump

jmp 0FFFFh:0 ; direct far jump

jmp ax ; indirect near jump

jmp pword [ebx] ; indirect far jump

call transfers control to the procedure, saving on the stack the address of the in-
struction following the call for later use by a ret (return) instruction. Rules for the
operands are the same as for the jmp instruction, but the call has no short variant of
direct instruction and thus it not optimized.

ret, retn and retf instructions terminate the execution of a procedure and transfers
control back to the program that originally invoked the procedure using the address that
was stored on the stack by the call instruction. ret is the equivalent for retn, which
returns from the procedure that was executed using the near call, while retf returns
from the procedure that was executed using the far call. These instructions default to
the size of address appropriate for the current code setting, but the size of address can be
forced to 16–bit by using the retw, retnw and retfw mnemonics, and to 32–bit by using
the retd, retnd and retfd mnemonics. All these instructions may optionally specify an
immediate operand, by adding this constant to the stack pointer, they effectively remove
any arguments that the calling program pushed on the stack before the execution of the
call instruction.

iret returns control to an interrupted procedure. It differs from ret in that it also
pops the flags from the stack into the flags register. The flags are stored on the stack
by the interrupt mechanism. It defaults to the size of return address appropriate for the
current code setting, but it can be forced to use 16–bit or 32–bit address by using the
iretw or iretd mnemonic.

The conditional transfer instructions are jumps that may or may not transfer control,
depending on the state of the CPU flags when the instruction executes. The mnemonics
for conditional jumps may be obtained by attaching the condition mnemonic (see table
2.1) to the j mnemonic, for example jc instruction will transfer the control when the
CF flag is set. The conditional jumps can be short or near, and direct only, and can
be optimized (see 1.2.5), the operand should be an immediate value specifying target
address.

The loop instructions are conditional jumps that use a value placed in cx (or ecx) to
specify the number of repetitions of a software loop. All loop instructions automatically
decrement cx (or ecx) and terminate the loop (don’t transfer the control) when cx (or
ecx) is zero. It uses cx or ecx whether the current code setting is 16–bit or 32–bit,
but it can be forced to use cx with the loopw mnemonic or to use ecx with the loopd

mnemonic. loope and loopz are the synonyms for the same instruction, which acts as

26 CHAPTER 2. INSTRUCTION SET

Mnemonic Condition tested Description

o OF = 1 overflow
no OF = 0 not overflow
c carry
b CF = 1 below

nae not above nor equal
nc not carry
ae CF = 0 above or equal
nb not below
e ZF = 1 equal
z zero
ne ZF = 0 not equal
nz not zero
be CF or ZF = 1 below or equal
na not above
a CF or ZF = 0 above

nbe not below nor equal
s SF = 1 sign
ns SF = 0 not sign
p PF = 1 parity
pe parity even
np PF = 0 not parity
po parity odd
l SF xor OF = 1 less

nge not greater nor equal
ge SF xor OF = 0 greater or equal
nl not less
le (SF xor OF) or ZF = 1 less or equal
ng not greater
g (SF xor OF) or ZF = 0 greater

nle not less nor equal

Table 2.1: Conditions.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 27

the standard loop, but also terminates the loop when ZF flag is set. loopew and loopzw

mnemonics force them to use cx register while looped and loopzd force them to use
ecx register. loopne and loopnz are the synonyms for the same instructions, which
acts as the standard loop, but also terminate the loop when ZF flag is not set. loopnew
and loopnzw mnemonics force them to use cx register while loopned and loopnzd force
them to use ecx register. Every loop instruction needs an operand being an immediate
value specifying target address, it can be only short jump (in the range of 128 bytes back
and 127 bytes forward from the address of instruction following the loop instruction).

jcxz branches to the label specified in the instruction if it finds a value of zero in cx,
jecxz does the same, but checks the value of ecx instead of cx. Rules for the operands
are the same as for the loop instruction.

int activates the interrupt service routine that corresponds to the number specified
as an operand to the instruction, the number should be in range from 0 to 255. The
interrupt service routine terminates with an iret instruction that returns control to
the instruction that follows int. int3 mnemonic codes the short (one byte) trap that
invokes the interrupt 3. into instruction invokes the interrupt 4 if the OF flag is set.

bound verifies that the signed value contained in the specified register lies within
specified limits. An interrupt 5 occurs if the value contained in the register is less
than the lower bound or greater than the upper bound. It needs two operands, the
first operand specifies the register being tested, the second operand should be memory
address for the two signed limit values. The operands can be word or dword in size.

bound ax,[bx] ; check word for bounds

bound eax,[esi] ; check double word for bounds

2.1.7 I/O instructions

in transfers a byte, word, or double word from an input port to al, ax, or eax. I/O ports
can be addressed either directly, with the immediate byte value coded in instruction, or
indirectly via the dx register. The destination operand should be al, ax, or eax register.
The source operand should be an immediate value in range from 0 to 255, or dx register.

in al,20h ; input byte from port 20h

in ax,dx ; input word from port addressed by dx

out transfers a byte, word, or double word to an output port from al, ax, or eax.
The program can specify the number of the port using the same methods as the in

instruction. The destination operand should be an immediate value in range from 0 to
255, or dx register. The source operand should be al, ax, or eax register.

out 20h,ax ; output word to port 20h

out dx,al ; output byte to port addressed by dx

28 CHAPTER 2. INSTRUCTION SET

2.1.8 Strings operations

The string operations operate on one element of a string. A string element may be a
byte, a word, or a double word. The string elements are addressed by si and di (or esi
and edi) registers. After every string operation si and/or di (or esi and/or edi) are
automatically updated to point to the next element of the string. If DF (direction flag)
is zero, the index registers are incremented, if DF is one, they are decremented. The
amount of the increment or decrement is 1, 2, or 4 depending on the size of the string
element. Every string operation instruction has short forms which have no operands and
use si and/or di when the code type is 16–bit, and esi and/or edi when the code type
is 32–bit. si and esi by default address data in the segment selected by ds, di and edi

always address data in the segment selected by es. Short form is obtained by attaching
to the mnemonic of string operation letter specifying the size of string element, it should
be b for byte element, w for word element, and d for double word element. Full form of
string operation needs operands providing the size operator and the memory addresses,
which can be si or esi with any segment prefix, di or edi always with es segment
prefix.

movs transfers the string element pointed to by si (or esi) to the location pointed to
by di (or edi). Size of operands can be byte, word or dword. The destination operand
should be memory addressed by di or edi, the source operand should be memory
addressed by si or esi with any segment prefix.

movs byte [di],[si] ; transfer byte

movs word [es:di],[ss:si] ; transfer word

movsd ; transfer double word

cmps subtracts the destination string element from the source string element and
updates the flags AF, SF, PF, CF and OF, but it does not change any of the compared
elements. If the string elements are equal, ZF is set, otherwise it is cleared. The first
operand for this instruction should be the source string element addressed by si or esi
with any segment prefix, the second operand should be the destination string element
addressed by di or edi.

cmpsb ; compare bytes

cmps word [ds:si],[es:di] ; compare words

cmps dword [fs:esi],[edi] ; compare double words

scas subtracts the destination string element from al, ax, or eax (depending on the
size of string element) and updates the flags AF, SF, ZF, PF, CF and OF. If the values
are equal, ZF is set, otherwise it is cleared. The operand should be the destination
string element addressed by di or edi.

scas byte [es:di] ; scan byte

scasw ; scan word

scas dword [es:edi] ; scan double word

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 29

lods places the source string element into al, ax, or eax. The operand should be
the source string element addressed by si or esi with any segment prefix.

lods byte [ds:si] ; load byte

lods word [cs:si] ; load word

lodsd ; load double word

stos places the value of al, ax, or eax into the destination string element. Rules for
the operand are the same as for the scas instruction.

ins transfers a byte, word, or double word from an input port addressed by dx

register to the destination string element. The destination operand should be memory
addressed by di or edi, the source operand should be the dx register.

insb ; input byte

ins word [es:di],dx ; input word

ins dword [edi],dx ; input double word

outs transfers the source string element to an output port addressed by dx register.
The destination operand should be the dx register and the source operand should be
memory addressed by si or esi with any segment prefix.

outs dx,byte [si] ; output byte

outsw ; output word

outs dx,dword [gs:esi] ; output double word

The repeat prefixes rep, repe/repz, and repne/repnz specify repeated string oper-
ation. When a string operation instruction has a repeat prefix, the operation is executed
repeatedly, each time using a different element of the string. The repetition terminates
when one of the conditions specified by the prefix is satisfied. All three prefixes auto-
matically decrease cx or ecx register (depending whether string operation instruction
uses the 16–bit or 32–bit addressing) after each operation and repeat the associated
operation until cx or ecx is zero. repe/repz and repne/repnz are used exclusively
with the scas and cmps instructions (described below). When these prefixes are used,
repetition of the next instruction depends on the zero flag (ZF) also, repe and repz

terminate the execution when the ZF is zero, repne and repnz terminate the execution
when the ZF is set.

rep movsd ; transfer multiple double words

repe cmpsb ; compare bytes until not equal

2.1.9 Flag control instructions

The flag control instructions provide a method for directly changing the state of bits in
the flag register. All instructions described in this section have no operands.

30 CHAPTER 2. INSTRUCTION SET

stc sets the CF (carry flag) to 1, clc zeroes the CF, cmc changes the CF to its
complement. std sets the DF (direction flag) to 1, cld zeroes the DF, sti sets the IF
(interrupt flag) to 1 and therefore enables the interrupts, cli zeroes the IF and therefore
disables the interrupts.

lahf copies SF, ZF, AF, PF, and CF to bits 7, 6, 4, 2, and 0 of the ah register. The
contents of the remaining bits are undefined. The flags remain unaffected.

sahf transfers bits 7, 6, 4, 2, and 0 from the ah register into SF, ZF, AF, PF, and
CF.

pushf decrements esp by two or four and stores the low word or double word of
flags register at the top of stack, size of stored data depends on the current code setting.
pushfw variant forces storing the word and pushfd forces storing the double word.

popf transfers specific bits from the word or double word at the top of stack, then
increments esp by two or four, this value depends on the current code setting. popfw

variant forces restoring from the word and popfd forces restoring from the double word.

2.1.10 Conditional operations

The instructions obtained by attaching the condition mnemonic (see table 2.1) to the
set mnemonic set a byte to one if the condition is true and set the byte to zero otherwise.
The operand should be an 8–bit be general register or the byte in memory.

setne al ; set al if zero flag cleared

seto byte [bx] ; set byte if overflow

salc instruction sets the all bits of al register when the carry flag is set and zeroes
the al register otherwise. This instruction has no arguments.

The instructions obtained by attaching the condition mnemonic to cmov mnemonic
transfer the word or double word from the general register or memory to the general
register only when the condition is true. The destination operand should be general
register, the source operand can be general register or memory.

cmove ax,bx ; move when zero flag set

cmovnc eax,[ebx] ; move when carry flag cleared

cmpxchg compares the value in the al, ax, or eax register with the destination
operand. If the two values are equal, the source operand is loaded into the destination
operand. Otherwise, the destination operand is loaded into the al, ax, or eax register.
The destination operand may be a general register or memory, the source operand must
be a general register.

cmpxchg dl,bl ; compare and exchange with register

cmpxchg [bx],dx ; compare and exchange with memory

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 31

cmpxchg8b compares the 64–bit value in edx and eax registers with the destination
operand. If the values are equal, the 64–bit value in ecx and ebx registers is stored in
the destination operand. Otherwise, the value in the destination operand is loaded into
edx and eax registers. The destination operand should be a quad word in memory.

cmpxchg8b [bx] ; compare and exchange 8 bytes

2.1.11 Miscellaneous instructions

nop instruction occupies one byte but affects nothing but the instruction pointer. This
instruction has no operands and doesn’t perform any operation.

ud2 instruction generates an invalid opcode exception. This instruction is provided
for software testing to explicitly generate an invalid opcode. This is instruction has no
operands.

xlat replaces a byte in the al register with a byte indexed by its value in a translation
table addressed by bx or ebx. The operand should be a byte memory addressed by bx

or ebx with any segment prefix. This instruction has also a short form xlatb which has
no operands and uses the bx or ebx address in the segment selected by ds depending
on the current code setting.

lds transfers a pointer variable from the source operand to ds and the destination
register. The source operand must be a memory operand, and the destination operand
must be a general register. The ds register receives the segment selector of the pointer
while the destination register receives the offset part of the pointer. les, lfs, lgs and
lss operate identically to lds except that rather than ds register the es, fs, gs and ss

is used respectively.

lds bx,[si] ; load pointer to ds:bx

lea transfers the offset of the source operand (rather than its value) to the destination
operand. The source operand must be a memory operand, and the destination operand
must be a general register.

lea dx,[bx+si+1] ; load effective address to dx

cpuid returns processor identification and feature information in the eax, ebx, ecx,
and edx registers. The information returned is selected by entering a value in the eax

register before the instruction is executed. This instruction has no operands.
pause instruction delays the execution of the next instruction an implementation

specific amount of time. It can be used to improve the performance of spin wait loops.
This instruction has no operands.

enter creates a stack frame that may be used to implement the scope rules of
block–structured high–level languages. A leave instruction at the end of a procedure
complements an enter at the beginning of the procedure to simplify stack management
and to control access to variables for nested procedures. The enter instruction includes

32 CHAPTER 2. INSTRUCTION SET

two parameters. The first parameter specifies the number of bytes of dynamic storage
to be allocated on the stack for the routine being entered. The second parameter
corresponds to the lexical nesting level of the routine, it can be in range from 0 to 31.
The specified lexical level determines how many sets of stack frame pointers the CPU
copies into the new stack frame from the preceding frame. This list of stack frame
pointers is sometimes called the display. The first word (or double word when code
is 32–bit) of the display is a pointer to the last stack frame. This pointer enables a
leave instruction to reverse the action of the previous enter instruction by effectively
discarding the last stack frame. After enter creates the new display for a procedure,
it allocates the dynamic storage space for that procedure by decrementing esp by the
number of bytes specified in the first parameter. To enable a procedure to address its
display, enter leaves bp (or ebp) pointing to the beginning of the new stack frame. If the
lexical level is zero, enter pushes bp (or ebp), copies sp to bp (or esp to ebp) and then
subtracts the first operand from esp. For nesting levels greater than zero, the processor
pushes additional frame pointers on the stack before adjusting the stack pointer.

enter 2048,0 ; enter and allocate 2048 bytes on stack

2.1.12 System instructions

lmsw loads the operand into the machine status word (bits 0 through 15 of cr0 register),
while smsw stores the machine status word into the destination operand. The operand
for both those instructions can be 16–bit general register or memory, for smsw it can
also be 32–bit general register.

lmsw ax ; load machine status from register

smsw [bx] ; store machine status to memory

lgdt and lidt instructions load the values in operand into the global descriptor table
register or the interrupt descriptor table register respectively. sgdt and sidt store the
contents of the global descriptor table register or the interrupt descriptor table register
in the destination operand. The operand should be a 6 bytes in memory.

lgdt [ebx] ; load global descriptor table

lldt loads the operand into the segment selector field of the local descriptor table
register and sldt stores the segment selector from the local descriptor table register in
the operand. ltr loads the operand into the segment selector field of the task register
and str stores the segment selector from the task register in the operand. Rules for
operand are the same as for the lmsw and smsw instructions.

lar loads the access rights from the segment descriptor specified by the selector
in source operand into the destination operand and sets the ZF flag. The destination
operand can be a 16-bit or 32–bit general register. The source operand should be a
16-bit general register or memory.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 33

lar ax,[bx] ; load access rights into word

lar eax,dx ; load access rights into double word

lsl loads the segment limit from the segment descriptor specified by the selector in
source operand into the destination operand and sets the ZF flag. Rules for operand
are the same as for the lar instruction.

verr and verw verify whether the code or data segment specified with the operand is
readable or writable from the current privilege level. The operand should be a word, it
can be general register or memory. If the segment is accessible and readable (for verr)
or writable (for verw) the ZF flag is set, otherwise it’s cleared. Rules for operand are
the same as for the lldt instruction.

arpl compares the RPL (requestor’s privilege level) fields of two segment selectors.
The first operand contains one segment selector and the second operand contains the
other. If the RPL field of the destination operand is less than the RPL field of the source
operand, the ZF flag is set and the RPL field of the destination operand is increased
to match that of the source operand. Otherwise, the ZF flag is cleared and no change
is made to the destination operand. The destination operand can be a word general
register or memory, the source operand must be a general register.

arpl bx,ax ; adjust RPL of selector in register

arpl [bx],ax ; adjust RPL of selector in memory

clts clears the TS (task switched) flag in the cr0 register. This instruction has no
operands.

lock prefix causes the processor’s bus–lock signal to be asserted during execution
of the accompanying instruction. In a multiprocessor environment, the bus–lock signal
insures that the processor has exclusive use of any shared memory while the signal is
asserted. The lock prefix can be prepended only to the following instructions and only
to those forms of the instructions where the destination operand is a memory operand:
add, adc, and, btc, btr, bts, cmpxchg, cmpxchg8b, dec, inc, neg, not, or, sbb, sub,
xor, xadd and xchg. If the lock prefix is used with one of these instructions and the
source operand is a memory operand, an undefined opcode exception may be generated.
An undefined opcode exception will also be generated if the lock prefix is used with
any instruction not in the above list. The xchg instruction always asserts the bus–lock
signal regardless of the presence or absence of the lock prefix.

hlt stops instruction execution and places the processor in a halted state. An
enabled interrupt, a debug exception, the BINIT, INIT or the RESET signal will resume
execution. This instruction has no operands.

invlpg invalidates (flushes) the TLB (translation lookaside buffer) entry specified
with the operand, which should be a memory. The processor determines the page that
contains that address and flushes the TLB entry for that page.

rdmsr loads the contents of a 64–bit MSR (model specific register) of the address
specified in the ecx register into registers edx and eax. wrmsr writes the contents of

34 CHAPTER 2. INSTRUCTION SET

registers edx and eax into the 64–bit MSR of the address specified in the ecx register.
rdtsc loads the current value of the processor’s time stamp counter from the 64–bit
MSR into the edx and eax registers. The processor increments the time stamp counter
MSR every clock cycle and resets it to 0 whenever the processor is reset.

rdpmc loads the contents of the 40–bit performance monitoring counter specified in
the ecx register into registers edx and eax. These instructions have no operands.

wbinvd writes back all modified cache lines in the processor’s internal cache to main
memory and invalidates (flushes) the internal caches. The instruction then issues a
special function bus cycle that directs external caches to also write back modified data
and another bus cycle to indicate that the external caches should be invalidated. This
instruction has no operands.

rsm return program control from the system management mode to the program that
was interrupted when the processor received an SMM interrupt. This instruction has
no operands.

sysenter executes a fast call to a level 0 system procedure, sysexit executes a fast
return to level 3 user code. The addresses used by these instructions are stored in MSRs.
These instructions have no operands.

2.1.13 FPU instructions

The FPU (Floating-Point Unit) instructions operate on the floating–point values in
three formats: single precision (32–bit), double precision (64–bit) and double extended
precision (80–bit). The FPU registers form the stack and each of them holds the double
extended precision floating–point value. When some values are pushed onto the stack
or are removed from the top, the FPU registers are shifted, so st0 is always the value
on the top of FPU stack, st1 is the first value below the top, etc. The st0 name has
also the synonym st.

fld pushes the floating–point value onto the FPU register stack. The operand can
be 32–bit, 64–bit or 80–bit memory location or the FPU register, its value is then loaded
onto the top of FPU register stack (the st0 register) and is automatically converted into
the double extended precision format.

fld dword [bx] ; load single prevision value from memory

fld st2 ; push value of st2 onto register stack

fld1, fldz, fldl2t, fldl2e, fldpi, fldlg2 and fldln2 load the commonly used
contants onto the FPU register stack. The loaded constants are +1.0, +0.0, log2 10,
log2 e, π, log10 2 and ln 2 respectively. These instructions have no operands.

fild converts the signed integer source operand into double extended precision
floating-point format and pushes the result onto the FPU register stack. The source
operand can be a 16–bit, 32–bit or 64–bit memory location.

fild qword [bx] ; load 64-bit integer from memory

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 35

fst copies the value of st0 register to the destination operand, which can be 32–bit
or 64–bit memory location or another FPU register. fstp performs the same operation
as fst and then pops the register stack, getting rid of st0. fstp accepts the same
operands as the fst instruction and can also store value in the 80–bit memory.

fst st3 ; copy value of st0 into st3 register

fstp tword [bx] ; store value in memory and pop stack

fist converts the value in st0 to a signed integer and stores the result in the
destination operand. The operand can be 16–bit or 32–bit memory location. fistp

performs the same operation and then pops the register stack, it accepts the same
operands as the fist instruction and can also store integer value in the 64–bit memory,
so it has the same rules for operands as fild instruction.

fbld converts the packed BCD integer into double extended precision floating–point
format and pushes this value onto the FPU stack. fbstp converts the value in st0 to
an 18–digit packed BCD integer, stores the result in the destination operand, and pops
the register stack. The operand should be an 80–bit memory location.

fadd adds the destination and source operand and stores the sum in the destination
location. The destination operand is always an FPU register, if the source is a memory
location, the destination is st0 register and only source operand should be specified.
If both operands are FPU registers, at least one of them should be st0 register. An
operand in memory can be a 32–bit or 64–bit value.

fadd qword [bx] ; add double precision value to st0

fadd st2,st0 ; add st0 to st2

faddp adds the destination and source operand, stores the sum in the destination
location and then pops the register stack. The destination operand must be an FPU
register and the source operand must be the st0. When no operands are specified, st1
is used as a destination operand.

faddp ; add st0 to st1 and pop the stack

faddp st2,st0 ; add st0 to st2 and pop the stack

fiadd instruction converts an integer source operand into double extended precision
floating–point value and adds it to the destination operand. The operand should be a
16–bit or 32–bit memory location.

fiadd word [bx] ; add word integer to st0

fsub, fsubr, fmul, fdiv, fdivr instruction are similar to fadd, have the same
rules for operands and differ only in the perfomed computation. fsub subtracts the
source operand from the destination operand, fsubr subtract the destination operand
from the source operand, fmul multiplies the destination and source operands, fdiv

divides the destination operand by the source operand and fdivr divides the source

36 CHAPTER 2. INSTRUCTION SET

operand by the destination operand. fsubp, fsubrp, fmulp, fdivp, fdivrp perform the
same operations and pop the register stack, the rules for operand are the same as for
the faddp instruction. fisub, fisubr, fimul, fidiv, fidivr perform these operations
after converting the integer source operand into floating–point value, they have the same
rules for operands as fiadd instruction.

fsqrt computes the square root of the value in st0 register, fsin computes the sine
of that value, fcos computes the cosine of that value, fchs complements its sign bit,
fabs clears its sign to create the absolute value, frndint rounds it to the nearest integral
value, depending on the current rounding mode. f2xm1 computes the exponential value
of 2 to the power of st0 and subtracts the 1.0 from it, the value of st0 must lie in the
range −1.0 to +1.0. All these instructions store the result in st0 and have no operands.

fsincos computes both the sine and the cosine of the value in st0 register, stores
the sine in st0 and pushes the cosine on the top of FPU register stack. fptan computes
the tangent of the value in st0, stores the result in st0 and pushes a 1.0 onto the FPU
register stack. fpatan computes the arctangent of the value in st1 divided by the value
in st0, stores the result in st1 and pops the FPU register stack. fyl2x computes the
binary logarithm of st0, multiplies it by st1, stores the result in st1 and pops the
FPU register stack; fyl2xp1 performs the same operation but it adds 1.0 to st0 before
computing the logarithm. fprem computes the remainder obtained from dividing the
value in st0 by the value in st1, and stores the result in st0. fprem1 performs the
same operation as fprem, but it computes the remainder in the way specified by IEEE
Standard 754. fscale truncates the value in st1 and increases the exponent of st0 by
this value. fxtract separates the value in st0 into its exponent and significand, stores
the exponent in st0 and pushes the significand onto the register stack. fnop performs
no operation. These instructions have no operands.

fxch exchanges the contents of st0 an another FPU register. The operand should be
an FPU register, if no operand is specified, the contents of st0 and st1 are exchanged.

fcom and fcomp compare the contents of st0 and the source operand and set flags
in the FPU status word according to the results. fcomp additionally pops the register
stack after performing the comparison. The operand can be a single or double precision
value in memory or the FPU register. When no operand is specified, st1 is used as a
source operand.

fcom ; compare st0 with st1

fcomp st2 ; compare st0 with st2 and pop stack

fcompp compares the contents of st0 and st1, sets flags in the FPU status word
according to the results and pops the register stack twice. This instruction has no
operands.

fucom, fucomp and fucompp performs an unordered comparison of two FPU registers.
Rules for operands are the same as for the fcom, fcomp and fcompp, but the source
operand must be an FPU register.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 37

ficom and ficomp compare the value in st0 with an integer source operand and set
the flags in the FPU status word according to the results. ficomp additionally pops the
register stack after performing the comparison. The integer value is converted to double
extended precision floating–point format before the comparison is made. The operand
should be a 16–bit or 32–bit memory location.

ficom word [bx] ; compare st0 with 16-bit integer

fcomi, fcomip, fucomi, fucomip perform the comparison of st0 with another FPU
register and set the ZF, PF and CF flags according to the results. fcomip and fucomip

additionaly pop the register stack after performing the comparison.
The instructions obtained by attaching the FPU condition mnemonic (see table 2.2)

to the fcmov mnemonic transfer the specified FPU register into st0 register if the given
test condition is true. These instructions allow two different syntaxes, one with single
operand specifying the source FPU register, and one with two operands, in that case
destination operand should be st0 register and the second operand specifies the source
FPU register.

fcomi st2 ; compare st0 with st2 and set flags

fcmovb st0,st2 ; transfer st2 to st0 if below

Mnemonic Condition tested Description

b CF = 1 below
e ZF = 1 equal
be CF or ZF = 1 below or equal
u PF = 1 unordered
nb CF = 0 not below
ne ZF = 0 not equal
nbe CF and ZF = 0 not below nor equal
nu PF = 0 not unordered

Table 2.2: FPU conditions.

ftst compares the value in st0 with 0.0 and sets the flags in the FPU status word
according to the results. fxam examines the contents of the st0 and sets the flags in
FPU status word to indicate the class of value in the register. These instructions have
no operands.

fstsw and fnstsw store the current value of the FPU status word in the destination
location. The destination operand can be either a 16–bit memory or the ax register.
fstsw checks for pending umasked FPU exceptions before storing the status word,
fnstsw does not.

fstcw and fnstcw store the current value of the FPU control word at the specified
destination in memory. fstcw checks for pending unmasked FPU exceptions before

38 CHAPTER 2. INSTRUCTION SET

storing the control word, fnstcw does not. fldcw loads the operand into the FPU
control word. The operand should be a 16–bit memory location.

fstenv and fnstenv store the current FPU operating environment at the memory
location specified with the destination operand, and then mask all FPU exceptions.
fstenv checks for pending umasked FPU exceptions before proceeding, fnstenv does
not. fldenv loads the complete operating environment from memory into the FPU.
fsave and fnsave store the current FPU state (operating environment and register
stack) at the specified destination in memory and reinitializes the FPU. fsave check
for pending unmasked FPU exceptions before proceeding, fnsave does not. frstor

loads the FPU state from the specified memory location. All these instructions need
an operand being a memory location. For each of these instructions exist two addi-
tional mnemonics that allow to precisely select the type of the operation. The fstenvw,
fnstenvw, fldenvw, fsavew, fnsavew and frstorw mnemonics force the instruction to
perform operation as in the 16–bit mode, while fstenvd, fnstenvd, fldenvd, fsaved,
fnsaved and frstord force the operation as in 32–bit mode.

finit and fninit set the FPU operating environment into its default state. finit
checks for pending unmasked FPU exception before proceeding, fninit does not. fclex
and fnclex clear the FPU exception flags in the FPU status word. fclex checks for
pending unmasked FPU exception before proceeding, fnclex does not. wait and fwait

are synonyms for the same instruction, which causes the processor to check for pending
unmasked FPU exceptions and handle them before proceeding. These instructions have
no operands.

ffree sets the tag associated with specified FPU register to empty. The operand
should be an FPU register.

fincstp and fdecstp rotate the FPU stack by one by adding or subtracting one to
the pointer of the top of stack. These instructions have no operands.

2.1.14 MMX instructions

The MMX instructions operate on the packed integer types and use the MMX registers,
which are the low 64–bit parts of the 80–bit FPU registers. Because of this MMX
instructions cannot be used at the same time as FPU instructions. They can operate
on packed bytes (eight 8–bit integers), packed words (four 16–bit integers) or packed
double words (two 32–bit integers), use of packed formats allows to perform operations
on multiple data at one time.

movq copies a quad word from the source operand to the destination operand. At
least one of the operands must be a MMX register, the second one can be also a MMX
register or 64–bit memory location.

movq mm0,mm1 ; move quad word from register to register

movq mm2,[ebx] ; move quad word from memory to register

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 39

movd copies a double word from the source operand to the destination operand. One
of the operands must be a MMX register, the second one can be a general register or
32–bit memory location. Only low double word of MMX register is used.

All general MMX operations have two operands, the destination operand should
be a MMX register, the source operand can be a MMX register or 64–bit memory
location. Operation is performed on the corresponding data elements of the source
and destination operand and stored in the data elements of the destination operand.
paddb, paddw and paddd perform the addition of packed bytes, packed words, or

packed double words. psubb, psubw and psubd perform the subtraction of appropriate
types. paddsb, paddsw, psubsb and psubsw perform the addition or subtraction of
packed bytes or packed words with the signed saturation. paddusb, paddusw, psubusb,
psubusw are analoguous, but with unsigned saturation. pmulhw and pmullw performs a
signed multiplication of the packed words and store the high or low words of the results
in the destination operand. pmaddwd performs a multiply of the packed words and
adds the four intermediate double word products in pairs to produce result as a packed
double words. pand, por and pxor perform the logical operations on the quad words,
pandn peforms also a logical negation of the destination operand before the operation.
pcmpeqb, pcmpeqw and pcmpeqd compare for equality of packed bytes, packed words

or packed double words. If a pair of data elements is equal, the corresponding data
element in the destination operand is filled with bits of value 1, otherwise it’s set to
0. pcmpgtb, pcmpgtw and pcmpgtd perform the similar operation, but they check
whether the data elements in the destination operand are greater than the correspoding
data elements in the source operand. packsswb converts packed signed words into
packed signed bytes, packssdw converts packed signed double words into packed signed
words, using saturation to handle overflow conditions. packuswb converts packed signed
words into packed unsigned bytes. Converted data elements from the source operand
are stored in the low part of the destination operand, while converted data elements
from the destination operand are stored in the high part. punpckhbw, punpckhwd

and punpckhdq interleaves the data elements from the high parts of the source and
destination operands and stores the result into the destination operand. punpcklbw,
punpcklwd and punpckldq perform the same operation, but the low parts of the source
and destination operand are used.

paddsb mm0,[esi] ; add packed bytes with signed saturation

pcmpeqw mm3,mm7 ; compare packed words for equality

psllw, pslld and psllq perform logical shift left of the packed words, packed double
words or a single quad word in the destination operand by the amount specified in the
source operand. psrlw, psrld and psrlq perform logical shift right of the packed words,
packed double words or a single quad word. psraw and psrad perform arithmetic shift
of the packed words or double words. The destination operand should be a MMX
register, while source operand can be a MMX register, 64–bit memory location, or 8–bit
immediate value.

40 CHAPTER 2. INSTRUCTION SET

psllw mm2,mm4 ; shift words left logically

psrad mm4,[ebx] ; shift double words right arithmetically

emms makes the FPU registers usable for the FPU instructions, it must be used
before using the FPU instructions if any MMX instructions were used.

2.1.15 SSE instructions

The SSE extension adds more MMX instructions and also introduces the operations
on packed single precision floating point values. The 128–bit packed single precision
format consists of four single precision floating point values. The 128–bit SSE registers
are designed for the purpose of operations on this data type.

movaps and movups transfer a double quad word operand containing packed sin-
gle precision values from source operand to destination operand. At least one of the
operands have to be a SSE register, the second one can be also a SSE register or 128–
bit memory location. Memory operands for movaps instruction must be aligned on
boundary of 16 bytes, operands for movups instruction don’t have to be aligned.

movups xmm0,[ebx] ; move unaligned double quad word

movlps moves packed two single precision values between the memory and the low
quad word of SSE register. movhps moved packed two single precision values between
the memory and the high quad word of SSE register. One of the operands must be a
SSE register, and the other operand must be a 64–bit memory location.

movlps xmm0,[ebx] ; move memory to low quad word of xmm0

movhps [esi],xmm7 ; move high quad word of xmm7 to memory

movlhps moves packed two single precision values from the low quad word of source
register to the high quad word of destination register. movhlps moves two packed single
precision values from the high quad word of source register to the low quad word of
destination register. Both operands have to be a SSE registers.

movmskps transfers the most significant bit of each of the four single precision values
in the SSE register into low four bits of a general register. The source operand must be
a SSE register, the destination operand must be a general register.

movss transfers a single precision value between source and destination operand
(only the low double word is trasferred). At least one of the operands have to be a SSE
register, the second one can be also a SSE register or 32–bit memory location.

movss [edi],xmm3 ; move low double word of xmm3 to memory

Each of the SSE arithmetic operations has two variants. When the mnemonic ends
with ps, the source operand can be a 128–bit memory location or a SSE register, the
destination operand must be a SSE register and the operation is performed on packed
four single precision values, for each pair of the corresponding data elements separately,

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 41

the result is stored in the destination register. When the mnemonic ends with ss, the
source operand can be a 32–bit memory location or a SSE register, the destination
operand must be a SSE register and the operation is performed on single precision
values, only low double words of SSE registers are used in this case, the result is stored
in the low double word of destination register.

addps and addss add the values, subps and subss subtract the source value from
destination value, mulps and mulss multiply the values, divps and divss divide the
destination value by the source value, rcpps and rcpss compute the approximate re-
ciprocal of the source value, sqrtps and sqrtss compute the square root of the source
value, rsqrtps and rsqrtss compute the approximate reciprocal of square root of the
source value, maxps and maxss compare the source and destination values and return
the greater one, minps and minss compare the source and destination values and return
the lesser one.

mulss xmm0,[ebx] ; multiply single precision values

addps xmm3,xmm7 ; add packed single precision values

andps, andnps, orps and xorps perform the logical operations on packed single
precision values. The source operand can be a 128–bit memory location or a SSE
register, the destination operand must be a SSE register.

cmpps compares packed single precision values and returns a mask result into the
destination operand, which must be a SSE register. The source operand can be a 128–
bit memory location or SSE register, the third operand must be an immediate operand
selecting code of one of the eight compare conditions (table 2.3). cmpss performs the
same operation on single precision values, only low double word of destination register
is affected, in this case source operand can be a 32–bit memory location or SSE register.
These two instructions have also variants with only two operands and the condition
encoded within mnemonic. Their mnemonics are obtained by attaching the mnemonic
from table 2.3 to the cmp mnemonic and then attaching the ps or ss at the end.

cmpps xmm2,xmm4,0 ; compare packed single precision values

cmpltss xmm0,[ebx] ; compare single precision values

comiss and ucomiss compare the single precision values and set the ZF, PF and CF
flags to show the result. The destination operand must be a SSE register, the source
operand can be a 32–bit memory location or SSE register.

shufps moves any two of the four single precision values from the destination operand
into the low quad word of the destination operand, and any two of the four values from
the source operand into the high quad word of the destination operand. The destination
operand must be a SSE register, the source operand can be a 128–bit memory location
or SSE register, the third operand must be an 8–bit immediate value selecting which
values will be moved into the destination operand. Bits 0 and 1 select the value to
be moved from destination operand to the low double word of the result, bits 2 and 3
select the value to be moved from the destination operand to the second double word,

42 CHAPTER 2. INSTRUCTION SET

Code Mnemonic Description

0 eq equal
1 lt less than
2 le less than or equal
3 unord unordered
4 neq not equal
5 nlt not less than
6 nle not less than nor equal
7 ord ordered

Table 2.3: SSE conditions.

bits 4 and 5 select the value to be moved from the source operand to the third double
word, and bits 6 and 7 select the value to be moved from the source operand to the high
double word of the result.

shufps xmm0,xmm0,10010011b ; shuffle double words

unpckhps performs an interleaved unpack of the values from the high parts of the
source and destination operands and stores the result in the destination operand, which
must be a SSE register. The source operand can be a 128–bit memory location or a SSE
register. unpcklps performs an interleaved unpack of the values from the low parts of
the source and destination operand and stores the result in the destination operand, the
rules for operands are the same.

cvtpi2ps converts packed two double word integers into the the packed two single
precision floating point values and stores the result in the low quad word of the desti-
nation operand, which should be a SSE register. The source operand can be a 64–bit
memory location or MMX register.

cvtpi2ps xmm0,mm0 ; integers to single precision values

cvtsi2ss converts a double word integer into a single precision floating point value
and stores the result in the low double word of the destination operand, which should be
a SSE register. The source operand can be a 32–bit memory location or 32–bit general
register.

cvtsi2ss xmm0,eax ; integer to single precision value

cvtps2pi converts packed two single precision floating point values into packed two
double word integers and stores the result in the destination operand, which should be
a MMX register. The source operand can be a 64–bit memory location or SSE register,
only low quad word of SSE register is used. cvttps2pi performs the similar operation,
except that truncation is used to round a source values to integers, rules for the operands
are the same.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 43

cvtps2pi mm0,xmm0 ; single precision values to integers

cvtss2si convert a single precision floating point value into a double word integer
and stores the result in the destination operand, which should be a 32–bit general
register. The source operand can be a 32–bit memory location or SSE register, only low
double word of SSE register is used. cvttss2si performs the similar operation, except
that truncation is used to round a source value to integer, rules for the operands are the
same.

cvtss2si eax,xmm0 ; single precision value to integer

pextrw copies the word in the source operand specified by the third operand to the
destination operand. The source operand must be a MMX register, the destination
operand must be a 32–bit general register (the high word of the destination is cleared),
the third operand must an 8–bit immediate value.

pextrw eax,mm0,1 ; extract word into eax

pinsrw inserts a word from the source operand in the destination operand at the
location specified with the third operand, which must be an 8–bit immediate value.
The destination operand must be a MMX register, the source operand can be a 16–bit
memory location or 32–bit general register (only low word of the register is used).

pinsrw mm1,ebx,2 ; insert word from ebx

pavgb and pavgw compute average of packed bytes or words. pmaxub return the max-
imum values of packed unsigned bytes, pminub returns the minimum values of packed
unsigned bytes, pmaxsw returns the maximum values of packed signed words, pminsw
returns the minimum values of packed signed words. pmulhuw performs a unsigned
multiplication of the packed words and stores the high words of the results in the des-
tination operand. psadbw computes the absolute differences of packed unsigned bytes,
sums the differences, and stores the sum in the low word of destination operand. All
these instructions follow the same rules for operands as the general MMX operations
described in previous section.

pmovmskb creates a mask made of the most significant bit of each byte in the source
operand and stores the result in the low byte of destination operand. The source operand
must be a MMX register, the destination operand must a 32–bit general register.

pshufw inserts words from the source operand in the destination operand from the
locations specified with the third operand. The destination operand must be a MMX
register, the source operand can be a 64–bit memory location or MMX register, third
operand must an 8–bit immediate value selecting which values will be moved into des-
tination operand, in the similar way as the third operand of the shufps instruction.

movntq moves the quad word from the source operand to memory using a non–
temporal hint to minimize cache pollution. The source operand should be a MMX
register, the destination operand should be a 64–bit memory location. movntps stores

44 CHAPTER 2. INSTRUCTION SET

packed single precision values from the SSE register to memory using a non–temporal
hint. The source operand should be a SSE register, the destination operand should be a
128–bit memory location. maskmovq stores selected bytes from the first operand into a
64–bit memory location using a non–temporal hint. Both operands should be a MMX
registers, the second operand selects wich bytes from the source operand are written
to memory. The memory location is pointed by DI (or EDI) register in the segment
selected by DS.

prefetcht0, prefetcht1, prefetcht2 and prefetchnta fetch the line of data from
memory that contains byte specified with the operand to a specified location in hierarchy.
The operand should be an 8–bit memory location.

sfence performs a serializing operation on all instruction storing to memory that
were issued prior to it. This instruction has no operands.

ldmxcsr loads the 32–bit memory operand into the MXCSR register. stmxcsr stores
the contents of MXCSR into a 32–bit memory operand.

fxsave saves the current state of the FPU, MXCSR register, and all the FPU
and SSE registers to a 512–byte memory location specified in the destination operand.
fxrstor reloads data previously stored with fxsave instruction from the specified 512–
byte memory location. The memory operand for both those instructions must be aligned
on 16 byte boundary, it should declare operand of no specified size.

2.1.16 SSE2 instructions

The SSE2 extension introduces the operations on packed double precision floating point
values, extends the syntax of MMX instructions, and adds also some new instructions.

movapd and movupd transfer a double quad word operand containing packed double
precision values from source operand to destination operand. These instructions are
analogous to movaps and movups and have the same rules for operands.

movlpd moves double precision value between the memory and the low quad word of
SSE register. movhpd moved double precision value between the memory and the high
quad word of SSE register. These instructions are analogous to movlps and movhps and
have the same rules for operands.

movmskpd transfers the most significant bit of each of the two double precision values
in the SSE register into low two bits of a general register. This instruction is analogous
to movmskps and has the same rules for operands.

movsd transfers a double precision value between source and destination operand
(only the low quad word is trasferred). At least one of the operands have to be a SSE
register, the second one can be also a SSE register or 64–bit memory location.

Arithmetic operations on double precision values are: addpd, addsd, subpd, subsd,
mulpd, mulsd, divpd, divsd, sqrtpd, sqrtsd, maxpd, maxsd, minpd, minsd, and they
are analoguous to arithmetic operations on single precision values described in previous
section. When the mnemonic ends with pd instead of ps, the operation is performed
on packed two double precision values, but rules for operands are the same. When

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 45

the mnemonic ends with sd instead of ss, the source operand can be a 64–bit memory
location or a SSE register, the destination operand must be a SSE register and the
operation is performed on double precision values, only low quad words of SSE registers
are used in this case.

andpd, andnpd, orpd and xorpd perform the logical operations on packed double
precision values. They are analoguous to SSE logical operations on single prevision
values and have the same rules for operands.

cmppd compares packed double precision values and returns and returns a mask
result into the destination operand. This instruction is analoguous to cmpps and has
the same rules for operands. cmpsd performs the same operation on double precision
values, only low quad word of destination register is affected, in this case source operand
can be a 64–bit memory or SSE register. Variant with only two operands are obtained
by attaching the condition mnemonic from table 2.3 to the cmp mnemonic and then
attaching the pd or sd at the end.

comisd and ucomisd compare the double precision values and set the ZF, PF and
CF flags to show the result. The destination operand must be a SSE register, the source
operand can be a 128–bit memory location or SSE register.

shufpd moves any of the two double precision values from the destination operand
into the low quad word of the destination operand, and any of the two values from the
source operand into the high quad word of the destination operand. This instruction is
analoguous to shufps and has the same rules for operand. Bit 0 of the third operand
selects the value to be moved from the destination operand, bit 1 selects the value to
be moved from the source operand, the rest of bits are reserved and must be zeroed.

unpckhpd performs an unpack of the high quad words from the source and destination
operands, unpcklpd performs an unpack of the low quad words from the source and
destination operands. They are analoguous to unpckhps and unpcklps, and have the
same rules for operands.

cvtps2pd converts the packed two single precision floating point values to two packed
double precision floating point values, the destination operand must be a SSE register,
the source operand can be a 64–bit memory location or SSE register. cvtpd2ps converts
the packed two double precision floating point values to packed two single precision
floating point values, the destination operand must be a SSE register, the source operand
can be a 128–bit memory location or SSE register. cvtss2sd converts the single precision
floating point value to double precision floating point value, the destination operand
must be a SSE register, the source operand can be a 32–bit memory location or SSE
register. cvtsd2ss converts the double precision floating point value to single precision
floating point value, the destination operand must be a SSE register, the source operand
can be 64–bit memory location or SSE register.

cvtpi2pd converts packed two double word integers into the the packed double
precision floating point values, the destination operand must be a SSE register, the
source operand can be a 64–bit memory location or MMX register. cvtsi2sd converts a
double word integer into a double precision floating point value, the destination operand

46 CHAPTER 2. INSTRUCTION SET

must be a SSE register, the source operand can be a 32–bit memory location or 32–bit
general register. cvtpd2pi converts packed double precision floating point values into
packed two double word integers, the destination operand should be a MMX register,
the source operand can be a 128–bit memory location or SSE register. cvttpd2pi

performs the similar operation, except that truncation is used to round a source values
to integers, rules for operands are the same. cvtsd2si converts a double precision
floating point value into a double word integer, the destination operand should be a
32–bit general register, the source operand can be a 64–bit memory location or SSE
register. cvttsd2si performs the similar operation, except that truncation is used to
round a source value to integer, rules for operands are the same.

cvtps2dq and cvttps2dq convert packed single precision floating point values to
packed four double word integers, storing them in the destination operand. cvtpd2dq

and cvttpd2dq convert packed double precision floating point values to packed two
double word integers, storing the result in the low quad word of the destination operand.
cvtdq2ps converts packed four double word integers to packed single precision floating
point values.

For all these instructions destination operand must be a SSE register, the source
operand can be a 128–bit memory location or SSE register.

cvtdq2pd converts packed two double word integers from the low quad word of the
source operand to packed double precision floating point values, the source can be a
64-bit memory location or SSE register, destination has to be SSE register.

movdqa and movdqu transfer a double quad word operand containing packed integers
from source operand to destination operand. At least one of the operands have to be
a SSE register, the second one can be also a SSE register or 128–bit memory location.
Memory operands for movdqa instruction must be aligned on boundary of 16 bytes,
operands for movdqu instruction don’t have to be aligned.

movq2dq moves the contents of the MMX source register to the low quad word of
destination SSE register. movdq2q moves the low quad word from the source SSE register
to the destination MMX register.

movq2dq xmm0,mm1 ; move from MMX register to SSE register

movdq2q mm0,xmm1 ; move from SSE register to MMX register

All MMX instructions operating on the 64–bit packed integers (those with mnemon-
ics starting with p) are extended to operate on 128–bit packed integers located in SSE
registers. Additional syntax for these instructions needs an SSE register where MMX
register was needed, and the 128–bit memory location or SSE register where 64–bit
memory location or MMX register were needed. The exception is pshufw instruction,
which doesn’t allow extended syntax, but has two new variants: pshufhw and pshuflw,
which allow only the extended syntax, and perform the same operation as pshufw on
the high or low quad words of operands respectively. Also the new instruction pshufd

is introduced, which performs the same operation as pshufw, but on the double words
instead of words, it allows only the extended syntax.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 47

psubb xmm0,[esi] ; subtract 16 packed bytes

pextrw eax,xmm0,7 ; extract highest word into eax

paddq performs the addition of packed quad words, psubq performs the subtraction of
packed quad words, pmuludq performs an unsigned multiplication of low double words
from each corresponding quad words and returns the results in packed quad words.
These instructions follow the same rules for operands as the general MMX operations
described in 2.1.14.

pslldq and psrldq perform logical shift left or right of the double quad word in the
destination operand by the amount of bytes specified in the source operand. The desti-
nation operand should be a SSE register, source operand should be an 8–bit immediate
value.

punpckhqdq interleaves the high quad word of the source operand and the high
quad word of the destination operand and writes them to the destination SSE register.
punpcklqdq interleaves the low quad word of the source operand and the low quad word
of the destination operand and writes them to the destination SSE register. The source
operand can be a 128–bit memory location or SSE register.

movntdq stores packed integer data from the SSE register to memory using non–
temporal hint. The source operand should be a SSE register, the destination operand
should be a 128–bit memory location. movntpd stores packed double precision values
from the SSE register to memory using a non–temporal hint. Rules for operand are the
same. movnti stores integer from a general register to memory using a non–temporal
hint. The source operand should be a 32–bit general register, the destination operand
should be a 32–bit memory location. maskmovdqu stores selected bytes from the first
operand into a 128–bit memory location using a non–temporal hint. Both operands
should be a SSE registers, the second operand selects wich bytes from the source operand
are written to memory. The memory location is pointed by DI (or EDI) register in the
segment selected by DS and does not need to be aligned.

clflush writes and invalidates the cache line associated with the address of byte
specified with the operand, which should be a 8–bit memory location.

lfence performs a serializing operation on all instruction loading from memory
that were issued prior to it. mfence performs a serializing operation on all instruction
accesing memory that were issued prior to it, and so it combines the functions of sfence
(described in previous section) and lfence instructions. These instructions have no
operands.

2.1.17 SSE3 instructions

Prescott technology introduced some new instructions to improve the performance of
SSE and SSE2 – this extension is called SSE3.

fisttp behaves like the fistp instruction and accepts the same operands, the only
difference is that it always used truncation, irrespective of the rounding mode.

48 CHAPTER 2. INSTRUCTION SET

movshdup loads into destination operand the 128–bit value obtained from the source
value of the same size by filling the each quad word with the two duplicates of the value
in its high double word.

movsldup performs the same action, except it duplicates the values of low double
words. The destination operand should be SSE register, the source operand can be SSE
register or 128–bit memory location.

movddup loads the 64–bit source value and duplicates it into high and low quad word
of the destination operand. The destination operand should be SSE register, the source
operand can be SSE register or 64–bit memory location.

lddqu is functionally equivalent to movdqu with memory as source operand, but it
may improve performance when the source operand crosses a cacheline boundary. The
destination operand has to be SSE register, the source operand must be 128–bit memory
location.

addsubps performs single precision addition of second and fourth pairs and single
precision substracion of the first and third pairs of floating point values in the operands.

addsubpd performs double precision addition of the second pair and double precision
subtraction of the first pair of floating point values in the operand.

haddps performs the addition of two single precision values within the each quad
word of source and destination operands, and stores the results of such horizontal addi-
tion of values from destination operand into low quad word of destination operand, and
the results from the source operand into high quad word of destination operand.

haddpd performs the addition of two double precision values within each operand,
and stores the result from destination operand into low quad word of destination operand,
and the result from source operand into high quad word of destination operand. All
these instructions need the destination operand to be SSE register, source operand can
be SSE register or 128–bit memory location.

monitor sets up an address range for monitoring of write–back stores. It need its
three operands to be EAX, ECX and EDX register in that order.

mwait waits for a write–back store to the address range set up by the monitor

instruction. It uses two operands with additional parameters, first being the EAX and
second the ECX register.

The functionality of SSE3 is further extended by the set of Supplemental SSE3
instructions (SSSE3). They generally follow the same rules for operands as all the
MMX operations extended by SSE.

phaddw and phaddd perform the horizontal additional of the pairs of adjacent values
from both the source and destination operand, and stores the sums into the destination
(sums from the source operand go into lower part of destination register). They operate
on 16–bit or 32–bit chunks, respectively. phaddsw performs the same operation on
signed 16–bit packed values, but the result of each addition is saturated. phsubw and
phsubd analogously perform the horizontal subtraction of 16–bit or 32–bit packed value,
and phsubsw performs the horizontal subtraction of signed 16–bit packed values with
saturation.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 49

pabsb, pabsw and pabsd calculate the absolute value of each signed packed signed
value in source operand and stores them into the destination register. They operator
on 8–bit, 16–bit and 32–bit elements respectively.

pmaddubsw multiplies signed 8–bit values from the source operand with the corre-
sponding unsigned 8–bit values from the destination operand to produce intermediate
16–bit values, and every adjacent pair of those intermediate values is then added hori-
zontally and those 16–bit sums are stored into the destination operand.

pmulhrsw multiplies corresponding 16–bit integers from the source and destination
operand to produce intermediate 32–bit values, and the 16 bits next to the highest bit
of each of those values are then rounded and packed into the destination operand.

pshufb shuffles the bytes in the destination operand according to the mask provided
by source operand - each of the bytes in source operand is an index of the target position
for the corresponding byte in the destination.

psignb, psignw and psignd perform the operation on 8–bit, 16–bit or 32–bit integers
in destination operand, depending on the signs of the values in the source. If the value
in source is negative, the corresponding value in the destination register is negated, if
the value in source is positive, no operation is performed on the corresponding value is
performed, and if the value in source is zero, the value in destination is zeroed, too.

palignr appends the source operand to the destination operand to form the inter-
mediate value of twice the size, and then extracts into the destination register the 64 or
128 bits that are right-aligned to the byte offset specified by the third operand, which
should be an 8–bit immediate value. This is the only SSSE3 instruction that takes three
arguments.

2.1.18 AMD 3DNow! instructions

The 3DNow! extension adds a new MMX instructions to those described in 2.1.14, and
introduces operation on the 64–bit packed floating point values, each consisting of two
single precision floating point values.

These instructions follow the same rules as the general MMX operations, the desti-
nation operand should be a MMX register, the source operand can be a MMX register
or 64–bit memory location. pavgusb computes the rounded averages of packed unsigned
bytes. pmulhrw performs a signed multiplication of the packed words, round the high
word of each double word results and stores them in the destination operand. pi2fd

converts packed double word integers into packed floating point values. pf2id converts
packed floating point values into packed double word integers using truncation. pi2fw

converts packed word integers into packed floating point values, only low words of each
double word in source operand are used. pf2iw converts packed floating point values
to packed word integers, results are extended to double words using the sign extension.
pfadd adds packed floating point values. pfsub and pfsubr subtracts packed floating
point values, the first one subtracts source values from destination values, the second
one subtracts destination values from the source values. pfmul multiplies packed float-

50 CHAPTER 2. INSTRUCTION SET

ing point values. pfacc adds the low and high floating point values of the destination
operand, storing the result in the low double word of destination, and adds the low and
high floating point values of the source operand, storing the result in the high double
word of destination. pfnacc subtracts the high floating point value of the destination
operand from the low, storing the result in the low double word of destination, and sub-
tracts the high floating point value of the source operand from the low, storing the result
in the high double word of destination. pfpnacc subtracts the high floating point value of
the destination operand from the low, storing the result in the low double word of desti-
nation, and adds the low and high floating point values of the source operand, storing the
result in the high double word of destination. pfmax and pfmin compute the maximum
and minimum of floating point values. pswapd reverses the high and low double word
of the source operand. pfrcp returns an estimates of the reciprocals of floating point
values from the source operand, pfrsqrt returns an estimates of the reciprocal square
roots of floating point values from the source operand, pfrcpit1 performs the first step
in the Newton–Raphson iteration to refine the reciprocal approximation produced by
pfrcp instruction, pfrsqit1 performs the first step in the Newton–Raphson iteration
to refine the reciprocal square root approximation produced by pfrsqrt instruction,
pfrcpit2 performs the second final step in the Newton–Raphson iteration to refine
the reciprocal approximation or the reciprocal square root approximation. pfcmpeq,
pfcmpge and pfcmpgt compare the packed floating point values and sets all bits or ze-
roes all bits of the correspoding data element in the destination operand according to
the result of comparison, first checks whether values are equal, second checks whether
destination value is greater or equal to source value, third checks whether destination
value is greater than source value.

prefetch and prefetchw load the line of data from memory that contains byte
specified with the operand into the data cache, prefetchw instruction should be used
when the data in the cache line is expected to be modified, otherwise the prefetch

instruction should be used. The operand should be an 8–bit memory location.

femms performs a fast clear of MMX state. It has no operands.

2.1.19 The x86-64 long mode instructions

The AMD64 and EM64T architectures (we will use the common name x86–64 for them
both) extend the x86 instruction set for the 64–bit processing. While legacy and compat-
ibility modes use the same set of registers and instructions, the new long mode extends
the x86 operations to 64 bits and introduces several new registers. You can turn on
generating the code for this mode with the use64 directive.

Each of the general purpose registers is extended to 64 bits and the eight whole new
general purpose registers and also eight new SSE registers are added. See table 2.4 for
the summary of new registers (only the ones that was not listed in table 1.9). The
general purpose registers of smallers sizes are the low order portions of the larger ones.
You can still access the ah, bh, ch and dh registers in long mode, but you cannot use

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 51

them in the same instruction with any of the new registers.

Type General SSE AVX
Bits 8 16 32 64 128 256

rax

rcx

rdx

rbx

spl rsp

bpl rbp

sil rsi

dil rdi

r8b r8w r8d r8 xmm8 ymm8

r9b r9w r9d r9 xmm9 ymm9

r10b r10w r10d r10 xmm10 ymm10

r11b r11w r11d r11 xmm11 ymm11

r12b r12w r12d r12 xmm12 ymm12

r13b r13w r13d r13 xmm13 ymm13

r14b r14w r14d r14 xmm14 ymm14

r15b r15w r15d r15 xmm15 ymm15

Table 2.4: New registers in long mode.

In general any instruction from x86 architecture, which allowed 16–bit or 32–bit
operand sizes, in long mode allows also the 64–bit operands. The 64–bit registers should
be used for addressing in long mode, the 32–bit addressing is also allowed, but it’s not
possible to use the addresses based on 16–bit registers. Below are the samples of new
operations possible in long mode on the example of mov instruction:

mov rax,r8 ; transfer 64-bit general register

mov al,[rbx] ; transfer memory addressed by 64-bit register

The long mode uses also the instruction pointer based addresses, you can specify it
manually with the special RIP register symbol, but such addressing is also automatically
generated by flat assembler, since there is no 64–bit absolute addressing in long mode.
You can still force the assembler to use the 32–bit absolute addressing by putting the
dword size override for address inside the square brackets. There is also one exception,
where the 64–bit absolute addressing is possible, it’s the mov instruction with one of the
operand being accumulator register, and second being the memory operand. To force
the assembler to use the 64–bit absolute addressing there, use the qword size operator
for address inside the square brackets. When no size operator is applied to address,
assembler generates the optimal form automatically.

52 CHAPTER 2. INSTRUCTION SET

mov [qword 0],rax ; absolute 64-bit addressing

mov [dword 0],r15d ; absolute 32-bit addressing

mov [0],rsi ; automatic RIP-relative addressing

mov [rip+3],sil ; manual RIP-relative addressing

Also as the immediate operands for 64–bit operations only the signed 32–bit values
are possible, with the only exception being the mov instruction with destination operand
being 64–bit general purpose register. Trying to force the 64–bit immediate with any
other instruction will cause an error.

If any operation is performed on the 32–bit general registers in long mode, the upper
32 bits of the 64–bit registers containing them are filled with zeros. This is unlike the
operations on 16–bit or 8–bit portions of those registers, which preserve the upper bits.

Three new type conversion instructions are available. The cdqe sign extends the
double word in EAX into quad word and stores the result in RAX register. cqo sign
extends the quad word in RAX into double quad word and stores the extra bits in the
RDX register. These instructions have no operands. movsxd sign extends the double
word source operand, being either the 32–bit register or memory, into 64–bit destination
operand, which has to be register. No analogous instruction is needed for the zero
extension, since it is done automatically by any operations on 32–bit registers, as noted
in previous paragraph. And the movzx and movsx instructions, conforming to the general
rule, can be used with 64–bit destination operand, allowing extension of byte or word
values into quad words.

All the binary arithmetic and logical instruction have been promoted to allow 64–bit
operands in long mode. The use of decimal arithmetic instructions in long mode is
prohibited.

The stack operations, like push and pop in long mode default to 64–bit operands and
it’s not possible to use 32–bit operands with them. The pusha and popa are disallowed
in long mode.

The indirect near jumps and calls in long mode default to 64–bit operands and it’s
not possible to use the 32–bit operands with them. On the other hand, the indirect
far jumps and calls allow any operands that were allowed by the x86 architecture and
also 80–bit memory operand is allowed (though only EM64T seems to implement such
variant), with the first eight bytes defining the offset and two last bytes specifying the
selector. The direct far jumps and calls are not allowed in long mode.

The I/O instructions, in, out, ins and outs are the exceptional instructions that
are not extended to accept quad word operands in long mode. But all other string
operations are, and there are new short forms movsq, cmpsq, scasq, lodsq and stosq

introduced for the variants of string operations for 64–bit string elements. The RSI and
RDI registers are used by default to address the string elements.

The lfs, lgs and lss instructions are extended to accept 80–bit source memory
operand with 64–bit destination register (though only EM64T seems to implement such
variant). The lds and les are disallowed in long mode.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 53

The system instructions like lgdt which required the 48–bit memory operand, in
long mode require the 80–bit memory operand.

The cmpxchg16b is the 64–bit equivalent of cmpxchg8b instruction, it uses the double
quad word memory operand and 64–bit registers to perform the analoguous operation.

The fxsave64 and fxrstor64 are new variants of fxsave and fxrstor instructions,
available only in long mode, which use a different format of storage area in order to
store some pointers in full 64-bit size.

swapgs is the new instruction, which swaps the contents of GS register and the
KernelGSbase model–specific register (MSR address 0C0000102h).

syscall and sysret is the pair of new instructions that provide the functionality
similar to sysenter and sysexit in long mode, where the latter pair is disallowed. The
sysexitq and sysretq mnemonics provide the 64–bit versions of sysexit and sysret

instructions.
The rdmsrq and wrmsrq mnemonics are the 64–bit variants of the rdmsr and wrmsr

instructions.

2.1.20 SSE4 instructions

There are actually three different sets of instructions under the name SSE4. Intel de-
signed two of them, SSE4.1 and SSE4.2, with latter extending the former into the full
Intel’s SSE4 set. On the other hand, the implementation by AMD includes only a few
instructions from this set, but also contains some additional instructions, that are called
the SSE4a set.

The SSE4.1 instructions mostly follow the same rules for operands, as the basic SSE
operations, so they require destination operand to be SSE register and source operand
to be 128–bit memory location or SSE register, and some operations require a third
operand, the 8–bit immediate value.

pmulld performs a signed multiplication of the packed double words and stores the
low double words of the results in the destination operand. pmuldq performs a two signed
multiplications of the corresponding double words in the lower quad words of operands,
and stores the results as packed quad words into the destination register. pminsb and
pmaxsb return the minimum or maximum values of packed signed bytes, pminuw and
pmaxuw return the minimum and maximum values of packed unsigned words, pminud,
pmaxud, pminsd and pmaxsd return minimum or maximum values of packed unsigned
or signed words. These instructions complement the instructions computing packed
minimum or maximum introduced by SSE.

ptest sets the ZF flag to one when the result of bitwise AND of the both operands
is zero, and zeroes the ZF otherwise. It also sets CF flag to one, when the result of
bitwise AND of the destination operand with the bitwise NOT of the source operand is
zero, and zeroes the CF otherwise. pcmpeqq compares packed quad words for equality,
and fills the corresponding elements of destination operand with either ones or zeros,
depending on the result of comparison.

54 CHAPTER 2. INSTRUCTION SET

packusdw converts packed signed double words from both the source and destination
operand into the unsigned words using saturation, and stores the eight resulting word
values into the destination register.

phminposuw finds the minimum unsigned word value in source operand and places
it into the lowest word of destination operand, setting the remaining upper bits of
destination to zero.

roundps, roundss, roundpd and roundsd perform the rounding of packed or individ-
ual floating point value of single or double precision, using the rounding mode specified
by the third operand.

roundsd xmm0,xmm1,0011b ; round toward zero

dpps calculates dot product of packed single precision floating point values, that is
it multiplies the corresponding pairs of values from source and destination operand and
then sums the products up. The high four bits of the 8–bit immediate third operand
control which products are calculated and taken to the sum, and the low four bits control,
into which elements of destination the resulting dot product is copied (the other elements
are filled with zero). dppd calculates dot product of packed double precision floating
point values. The bits 4 and 5 of third operand control, which products are calculated
and added, and bits 0 and 1 of this value control, which elements in destination register
should get filled with the result. mpsadbw calculates multiple sums of absolute differences
of unsigned bytes. The third operand controls, with value in bits 0–1, which of the
four-byte blocks in source operand is taken to calculate the absolute differencies, and
with value in bit 2, at which of the two first four-byte block in destination operand start
calculating multiple sums. The sum is calculated from four absolute differencies between
the corresponding unsigned bytes in the source and destination block, and each next
sum is calculated in the same way, but taking the four bytes from destination at the
position one byte after the position of previous block. The four bytes from the source
stay the same each time. This way eight sums of absolute differencies are calculated and
stored as packed word values into the destination operand. The instructions described
in this paragraph follow the same rules for operands, as roundps instruction.

blendps, blendvps, blendpd and blendvpd conditionally copy the values from
source operand into the destination operand, depending on the bits of the mask provided
by third operand. If a mask bit is set, the corresponding element of source is copied into
the same place in destination, otherwise this position is destination is left unchanged.
The rules for the first two operands are the same, as for general SSE instructions.
blendps and blendpd need third operand to be 8–bit immediate, and they operate on
single or double precision values, respectively. blendvps and blendvpd require third
operand to be the XMM0 register.

blendvps xmm3,xmm7,xmm0 ; blend according to mask

pblendw conditionally copies word elements from the source operand into the des-
tination, depending on the bits of mask provided by third operand, which needs to be

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 55

8–bit immediate value. pblendvb conditionally copies byte elements from the source
operands into destination, depending on mask defined by the third operand, which has
to be XMM0 register. These instructions follow the same rules for operands as blendps
and blendvps instructions, respectively.

insertps inserts a single precision floating point value taken from the position in
source operand specified by bits 6–7 of third operand into location in destination register
selected by bits 4–5 of third operand. Additionally, the low four bits of third operand
control, which elements in destination register will be set to zero. The first two operands
follow the same rules as for the general SSE operation, the third operand should be 8–bit
immediate.

extractps extracts a single precision floating point value taken from the location
in source operand specified by low two bits of third operand, and stores it into the
destination operand. The destination can be a 32–bit memory value or general purpose
register, the source operand must be SSE register, and the third operand should be
8–bit immediate value.

extractps edx,xmm3,3 ; extract the highest value

pinsrb, pinsrd and pinsrq copy a byte, double word or quad word from the source
operand into the location of destination operand determined by the third operand. The
destination operand has to be SSE register, the source operand can be a memory location
of appropriate size, or the 32–bit general purpose register (but 64–bit general purpose
register for pinsrq, which is only available in long mode), and the third operand has
to be 8–bit immediate value. These instructions complement the pinsrw instruction
operating on SSE register destination, which was introduced by SSE2.

pinsrd xmm4,eax,1 ; insert double word into second position

pextrb, pextrw, pextrd and pextrq copy a byte, word, double word or quad word
from the location in source operand specified by third operand, into the destination. The
source operand should be SSE register, the third operand should be 8–bit immediate,
and the destination operand can be memory location of appropriate size, or the 32–bit
general purpose register (but 64–bit general purpose register for pextrq, which is only
available in long mode). The pextrw instruction with SSE register as source was already
introduced by SSE2, but SSE4 extends it to allow memory operand as destination.

pextrw [ebx],xmm3,7 ; extract highest word into memory

pmovsxbw and pmovzxbw perform sign extension or zero extension of eight byte values
from the source operand into packed word values in destination operand, which has to
be SSE register. The source can be 64–bit memory or SSE register - when it is register,
only its low portion is used. pmovsxbd and pmovzxbd perform sign extension or zero
extension of the four byte values from the source operand into packed double word values
in destination operand, the source can be 32–bit memory or SSE register. pmovsxbq

56 CHAPTER 2. INSTRUCTION SET

and pmovzxbq perform sign extension or zero extension of the two byte values from the
source operand into packed quad word values in destination operand, the source can be
16–bit memory or SSE register. pmovsxwd and pmovzxwd perform sign extension or zero
extension of the four word values from the source operand into packed double words
in destination operand, the source can be 64–bit memory or SSE register. pmovsxwq

and pmovzxwq perform sign extension or zero extension of the two word values from
the source operand into packed quad words in destination operand, the source can be
32–bit memory or SSE register. pmovsxdq and pmovzxdq perform sign extension or zero
extension of the two double word values from the source operand into packed quad words
in destination operand, the source can be 64–bit memory or SSE register.

pmovzxbq xmm0,word [si] ; zero-extend bytes to quad words

pmovsxwq xmm0,xmm1 ; sign-extend words to quad words

movntdqa loads double quad word from the source operand to the destination using
a non-temporal hint. The destination operand should be SSE register, and the source
operand should be 128–bit memory location.

The SSE4.2, described below, adds not only some new operations on SSE registers,
but also introduces some completely new instructions operating on general purpose
registers only.

pcmpistri compares two zero-ended (implicit length) strings provided in its source
and destination operand and generates an index stored to ECX; pcmpistrm performs
the same comparison and generates a mask stored to XMM0. pcmpestri compares two
strings of explicit lengths, with length provided in EAX for the destination operand
and in EDX for the source operand, and generates an index stored to ECX; pcmpestrm
performs the same comparision and generates a mask stored to XMM0. The source
and destination operand follow the same rules as for general SSE instructions, the third
operand should be 8–bit immediate value determining the details of performed operation
- refer to Intel documentation for information on those details.

pcmpgtq compares packed quad words, and fills the corresponding elements of desti-
nation operand with either ones or zeros, depending on whether the value in destination
is greater than the one in source, or not. This instruction follows the same rules for
operands as pcmpeqq.

crc32 accumulates a CRC32 value for the source operand starting with initial value
provided by destination operand, and stores the result in destination. Unless in long
mode, the destination operand should be a 32–bit general purpose register, and the
source operand can be a byte, word, or double word register or memory location. In
long mode the destination operand can also be a 64–bit general purpose register, and
the source operand in such case can be a byte or quad word register or memory location.

crc32 eax,dl ; accumulate CRC32 on byte value

crc32 eax,word [ebx] ; accumulate CRC32 on word value

crc32 rax,qword [rbx] ; accumulate CRC32 on quad word value

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 57

popcnt calculates the number of bits set in the source operand, which can be 16–bit,
32–bit, or 64–bit general purpose register or memory location, and stores this count in
the destination operand, which has to be register of the same size as source operand.
The 64–bit variant is available only in long mode.

popcnt ecx,eax ; count bits set to 1

The SSE4a extension, which also includes the popcnt instruction introduced by
SSE4.2, at the same time adds the lzcnt instruction, which follows the same syntax,
and calculates the count of leading zero bits in source operand (if the source operand is
all zero bits, the total number of bits in source operand is stored in destination).

extrq extract the sequence of bits from the low quad word of SSE register provided
as first operand and stores them at the low end of this register, filling the remaining bits
in the low quad word with zeros. The position of bit string and its length can either
be provided with two 8–bit immediate values as second and third operand, or by SSE
register as second operand (and there is no third operand in such case), which should
contain position value in bits 8–13 and length of bit string in bits 0–5.

extrq xmm0,8,7 ; extract 8 bits from position 7

extrq xmm0,xmm5 ; extract bits defined by register

insertq writes the sequence of bits from the low quad word of the source operand
into specified position in low quad word of the destination operand, leaving the other
bits in low quad word of destination intact. The position where bits should be written
and the length of bit string can either be provided with two 8–bit immediate values as
third and fourth operand, or by the bit fields in source operand (and there are only two
operands in such case), which should contain position value in bits 72–77 and length of
bit string in bits 64–69.

insertq xmm1,xmm0,4,2 ; insert 4 bits at position 2

insertq xmm1,xmm0 ; insert bits defined by register

movntss and movntsd store single or double precision floating point value from the
source SSE register into 32–bit or 64–bit destination memory location respectively, using
non–temporal hint.

2.1.21 AVX instructions

The Advanced Vector Extensions introduce instructions that are new variants of SSE
instructions, with new scheme of encoding that allows extended syntax having a desti-
nation operand separate from all the source operands. It also introduces 256–bit AVX
registers, which extend up the old 128–bit SSE registers. Any AVX instruction that
puts some result into SSE register, puts zero bits into high portion of the AVX register
containing it.

58 CHAPTER 2. INSTRUCTION SET

The AVX version of SSE instruction has the mnemonic obtained by prepending SSE
instruction name with v. For any SSE arithmetic instruction which had a destination
operand also being used as one of the source values, the AVX variant has a new syntax
with three operands – the destination and two sources. The destination and first source
can be SSE registers, and second source can be SSE register or memory. If the operation
is performed on single pair of values, the remaining bits of first source SSE register are
copied into the the destination register.

vsubss xmm0,xmm2,xmm3 ; subtract two 32-bit floats

vmulsd xmm0,xmm7,qword [esi] ; multiply two 64-bit floats

In case of packed operations, each instruction can also operate on the 256–bit data size
when the AVX registers are specified instead of SSE registers, and the size of memory
operand is also doubled then.

vaddps ymm1,ymm5,yword [esi] ; eight sums of 32-bit float pairs

The instructions that operate on packed integer types (in particular the ones that ear-
lier had been promoted from MMX to SSE) also acquired the new syntax with three
operands, however they are only allowed to operate on 128–bit packed types and thus
cannot use the whole AVX registers.

vpavgw xmm3,xmm0,xmm2 ; average of 16-bit integers

vpslld xmm1,xmm0,1 ; shift double words left

If the SSE version of instruction had a syntax with three operands, the third one being
an immediate value, the AVX version of such instruction takes four operands, with
immediate remaining the last one.

vshufpd ymm0,ymm1,ymm2,10010011b ; shuffle 64-bit floats

vpalignr xmm0,xmm4,xmm2,3 ; extract byte aligned value

The promotion to new syntax according to the rules described above has been applied
to all the instructions from SSE extensions up to SSE4, with the exceptions described
below.

vdppd instruction has syntax extended to four operans, but it does not have a 256–bit
version.

The are a few instructions, namely vsqrtpd, vsqrtps, vrcpps and vrsqrtps, which
can operate on 256–bit data size, but retained the syntax with only two operands,
because they use data from only one source:

vsqrtpd ymm1,ymm0 ; put square roots into other register

In a similar way vroundpd and vroundps retained the syntax with three operands,
the last one being immediate value.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 59

vroundps ymm0,ymm1,0011b ; round toward zero

Also some of the operations on packed integers kept their two–operand or three–
operand syntax while being promoted to AVX version. In such case these instruc-
tions follow exactly the same rules for operands as their SSE counterparts (since op-
erations on packed integers do not have 256–bit variants in AVX extension). These
include vpcmpestri, vpcmpestrm, vpcmpistri, vpcmpistrm, vphminposuw, vpshufd,
vpshufhw, vpshuflw. And there are more instructions that in AVX versions keep ex-
actly the same syntax for operands as the one from SSE, without any additional options:
vcomiss, vcomisd, vcvtss2si, vcvtsd2si, vcvttss2si, vcvttsd2si, vextractps,
vpextrb, vpextrw, vpextrd, vpextrq, vmovd, vmovq, vmovntdqa, vmaskmovdqu, vpmovmskb,
vpmovsxbw, vpmovsxbd, vpmovsxbq, vpmovsxwd, vpmovsxwq, vpmovsxdq, vpmovzxbw,
vpmovzxbd, vpmovzxbq, vpmovzxwd, vpmovzxwq and vpmovzxdq.

The move and conversion instructions have mostly been promoted to allow 256–bit
size operands in addition to the 128–bit variant with syntax identical to that from SSE
version of the same instruction. Each of the vcvtdq2ps, vcvtps2dq and vcvttps2dq,
vmovaps, vmovapd, vmovups, vmovupd, vmovdqa, vmovdqu, vlddqu, vmovntps, vmovntpd,
vmovntdq, vmovsldup, vmovshdup, vmovmskps and vmovmskpd inherits the 128–bit syn-
tax from SSE without any changes, and also allows a new form with 256–bit operands
in place of 128–bit ones.

vmovups [edi],ymm6 ; store unaligned 256-bit data

vmovddup has the identical 128–bit syntax as its SSE version, and it also has a
256–bit version, which stores the duplicates of the lowest quad word from the source
operand in the lower half of destination operand, and in the upper half of destination
the duplicates of the low quad word from the upper half of source. Both source and
destination operands need then to be 256–bit values.

vmovlhps and vmovhlps have only 128–bit versions, and each takes three operands,
which all must be SSE registers. vmovlhps copies two single precision values from the
low quad word of second source register to the high quad word of destination register,
and copies the low quad word of first source register into the low quad word of destination
register. vmovhlps copies two single precision values from the high quad word of second
source register to the low quad word of destination register, and copies the high quad
word of first source register into the high quad word of destination register.

vmovlps, vmovhps, vmovlpd and vmovhpd have only 128–bit versions and their syntax
varies depending on whether memory operand is a destination or source. When memory
is destination, the syntax is identical to the one of equivalent SSE instruction, and when
memory is source, the instruction requires three operands, first two being SSE registers
and the third one 64–bit memory. The value put into destination is then the value
copied from first source with either low or high quad word replaced with value from
second source (the memory operand).

vmovhps [esi],xmm7 ; store upper half to memory

60 CHAPTER 2. INSTRUCTION SET

vmovlps xmm0,xmm7,[ebx] ; low from memory, rest from register

vmovss and vmovsd have syntax identical to their SSE equivalents as long as one
of the operands is memory, while the versions that operate purely on registers require
three operands (each being SSE register). The value stored in destination is then the
value copied from first source with lowest data element replaced with the lowest value
from second source.

vmovss xmm3,[edi] ; low from memory, rest zeroed

vmovss xmm0,xmm1,xmm2 ; one value from xmm2, three from xmm1

vcvtss2sd, vcvtsd2ss, vcvtsi2ss and vcvtsi2d use the three–operand syntax,
where destination and first source are always SSE registers, and the second source
follows the same rules and the source in syntax of equivalent SSE instruction. The
value stored in destination is then the value copied from first source with lowest data
element replaced with the result of conversion.

vcvtsi2sd xmm4,xmm4,ecx ; 32-bit integer to 64-bit float

vcvtsi2ss xmm0,xmm0,rax ; 64-bit integer to 32-bit float

vcvtdq2pd and vcvtps2pd allow the same syntax as their SSE equivalents, plus the
new variants with AVX register as destination and SSE register or 128–bit memory as
source. Analogously vcvtpd2dq, vcvttpd2dq and vcvtpd2ps, in addition to variant
with syntax identical to SSE version, allow a variant with SSE register as destination
and AVX register or 256–bit memory as source.

vinsertps, vpinsrb, vpinsrw, vpinsrd, vpinsrq and vpblendw use a syntax with
four operands, where destination and first source have to be SSE registers, and the third
and fourth operand follow the same rules as second and third operand in the syntax of
equivalent SSE instruction. Value stored in destination is the the value copied from first
source with some data elements replaced with values extracted from the second source,
analogously to the operation of corresponding SSE instruction.

vpinsrd xmm0,xmm0,eax,3 ; insert double word

vblendvps, vblendvpd and vpblendvb use a new syntax with four register operands:
destination, two sources and a mask, where second source can also be a memory operand.
vblendvps and vblendvpd have 256–bit variant, where operands are AVX registers or
256–bit memory, as well as 128–bit variant, which has operands being SSE registers or
128–bit memory. vpblendvb has only a 128–bit variant. Value stored in destination is
the value copied from the first source with some data elements replaced, according to
mask, by values from the second source.

vblendvps ymm3,ymm1,ymm2,ymm7 ; blend according to mask

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 61

vptest allows the same syntax as its SSE version and also has a 256–bit version,
with both operands doubled in size. There are also two new instructions, vtestps and
vtestpd, which perform analogous tests, but only of the sign bits of corresponding single
precision or double precision values, and set the ZF and CF accordingly. They follow
the same syntax rules as vptest.

vptest ymm0,yword [ebx] ; test 256-bit values

vtestpd xmm0,xmm1 ; test sign bits of 64-bit floats

vbroadcastss, vbroadcastsd and vbroadcastf128 are new instructions, which
broadcast the data element defined by source operand into all elements of corresponing
size in the destination register. vbroadcastss needs source to be 32–bit memory and
destination to be either SSE or AVX register. vbroadcastsd requires 64–bit memory
as source, and AVX register as destination. vbroadcastf128 requires 128–bit memory
as source, and AVX register as destination.

vbroadcastss ymm0,dword [eax] ; get eight copies of value

vinsertf128 is the new instruction, which takes four operands. The destination
and first source have to be AVX registers, second source can be SSE register or 128–
bit memory location, and fourth operand should be an immediate value. It stores in
destination the value obtained by taking contents of first source and replacing one of its
128–bit units with value of the second source. The lowest bit of fourth operand specifies
at which position that replacement is done (either 0 or 1).

vextractf128 is the new instruction with three operands. The destination needs
to be SSE register or 128–bit memory location, the source must be AVX register, and
the third operand should be an immediate value. It extracts into destination one of
the 128–bit units from source. The lowest bit of third operand specifies, which unit is
extracted.

vmaskmovps and vmaskmovpd are the new instructions with three operands that
selectively store in destination the elements from second source depending on the sign
bits of corresponding elements from first source. These instructions can operate on
either 128–bit data (SSE registers) or 256–bit data (AVX registers). Either destination
or second source has to be a memory location of appropriate size, the two other operands
should be registers.

vmaskmovps [edi],xmm0,xmm5 ; conditionally store

vmaskmovpd ymm5,ymm0,[esi] ; conditionally load

vpermilpd and vpermilps are the new instructions with three operands that per-
mute the values from first source according to the control fields from second source and
put the result into destination operand. It allows to use either three SSE registers or
three AVX registers as its operands, the second source can be a memory of size equal
to the registers used. In alternative form the second source can be immediate value and
then the first source can be a memory location of the size equal to destination register.

62 CHAPTER 2. INSTRUCTION SET

vperm2f128 is the new instruction with four operands, which selects 128–bit blocks
of floating point data from first and second source according to the bit fields from
fourth operand, and stores them in destination. Destination and first source need to be
AVX registers, second source can be AVX register or 256–bit memory area, and fourth
operand should be an immediate value.

vperm2f128 ymm0,ymm6,ymm7,12h ; permute 128-bit blocks

vzeroall instruction sets all the AVX registers to zero. vzeroupper sets the upper
128–bit portions of all AVX registers to zero, leaving the SSE registers intact. These
new instructions take no operands.

vldmxcsr and vstmxcsr are the AVX versions of ldmxcsr and stmxcsr instructions.
The rules for their operands remain unchanged.

2.1.22 AVX2 instructions

The AVX2 extension allows all the AVX instructions operating on packed integers to
use 256–bit data types, and introduces some new instructions as well.

The AVX instructions that operate on packed integers and had only a 128–bit vari-
ants, have been supplemented with 256–bit variants, and thus their syntax rules became
analogous to AVX instructions operating on packed floating point types.

vpsubb ymm0,ymm0,[esi] ; subtract 32 packed bytes

vpavgw ymm3,ymm0,ymm2 ; average of 16-bit integers

However there are some instructions that have not been equipped with the 256–bit vari-
ants. vpcmpestri, vpcmpestrm, vpcmpistri, vpcmpistrm, vpextrb, vpextrw, vpextrd,
vpextrq, vpinsrb, vpinsrw, vpinsrd, vpinsrq and vphminposuw are not affected by
AVX2 and allow only the 128–bit operands.

The packed shift instructions, which allowed the third operand specifying amount to
be SSE register or 128–bit memory location, use the same rules for the third operand
in their 256–bit variant.

vpsllw ymm2,ymm2,xmm4 ; shift words left

vpsrad ymm0,ymm3,xword [ebx] ; shift double words right

There are also new packed shift instructions with standard three–operand AVX syn-
tax, which shift each element from first source by the amount specified in corresponding
element of second source, and store the results in destination. vpsllvd shifts 32-bit
elements left, vpsllvq shifts 64–bit elements left, vpsrlvd shifts 32-bit elements right
logically, vpsrlvq shifts 64–bit elements right logically and vpsravd shifts 32-bit ele-
ments right arithmetically.

The sign–extend and zero–extend instructions, which in AVX versions allowed source
operand to be SSE register or a memory of specific size, in the new 256–bit variant need
memory of that size doubled or SSE register as source and AVX register as destination.

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 63

vpmovzxbq ymm0,dword [esi] ; bytes to quad words

Also vmovntdqa has been upgraded with 256–bit variant, so it allows to transfer
256–bit value from memory to AVX register, it needs memory address to be aligned to
32 bytes.

vpmaskmovd and vpmaskmovq are the new instructions with syntax identical to
vmaskmovps or vmaskmovpd, and they performs analogous operation on packed 32–bit
or 64–bit values.

vinserti128, vextracti128, vbroadcasti128 and vperm2i128 are the new in-
structions with syntax identical to vinsertf128, vextractf128, vbroadcastf128 and
vperm2f128 respectively, and they perform analogous operations on 128–bit blocks of
integer data.

vbroadcastss and vbroadcastsd instructions have been extended to allow SSE
register as a source operand (which in AVX could only be a memory).

vpbroadcastb, vpbroadcastw, vpbroadcastd and vpbroadcastq are the new in-
structions which broadcast the byte, word, double word or quad word from the source
operand into all elements of corresponing size in the destination register. The destina-
tion operand can be either SSE or AVX register, and the source operand can be SSE
register or memory of size equal to the size of data element.

vpbroadcastb ymm0,byte [ebx] ; get 32 identical bytes

vpermd and vpermps are new three–operand instructions, which use each 32–bit
element from first source as an index of element in second source which is copied into
destination at position corresponding to element containing index. The destination and
first source have to be AVX registers, and the second source can be AVX register or
256–bit memory.

vpermq and vpermpd are new three–operand instructions, which use 2–bit indexes
from the immediate value specified as third operand to determine which element from
source store at given position in destination. The destination has to be AVX register,
source can be AVX register or 256–bit memory, and the third operand must be 8–bit
immediate value.

The family of new instructions performing gather operation have special syntax, as
in their memory operand they use addressing mode that is unique to them. The base
of address can be a 32–bit or 64–bit general purpose register (the latter only in long
mode), and the index (possibly multiplied by scale value, as in standard addressing) is
specified by SSE or AVX register. It is possible to use only index without base and any
numerical displacement can be added to the address. Each of those instructions takes
three operands. First operand is the destination register, second operand is memory
addressed with a vector index, and third operand is register containing a mask. The most
significant bit of each element of mask determines whether a value will be loaded from
memory into corresponding element in destination. The address of each element to load
is determined by using the corresponding element from index register in memory operand

64 CHAPTER 2. INSTRUCTION SET

to calculate final address with given base and displacement. When the index register
contains less elements than the destination and mask registers, the higher elements of
destination are zeroed. After the value is successfuly loaded, the corresponding element
in mask register is set to zero. The destination, index and mask should all be distinct
registers, it is not allowed to use the same register in two different roles.

vgatherdps loads single precision floating point values addressed by 32–bit indexes.
The destination, index and mask should all be registers of the same type, either SSE or
AVX. The data addressed by memory operand is 32–bit in size.

vgatherdps xmm0,[eax+xmm1],xmm3 ; gather four floats

vgatherdps ymm0,[ebx+ymm7*4],ymm3 ; gather eight floats

vgatherqps loads single precision floating point values addressed by 64–bit indexes.
The destination and mask should always be SSE registers, while index register can be
either SSE or AVX register. The data addressed by memory operand is 32–bit in size.

vgatherqps xmm0,[xmm2],xmm3 ; gather two floats

vgatherqps xmm0,[ymm2+64],xmm3 ; gather four floats

vgatherdpd loads double precision floating point values addressed by 32–bit indexes.
The index register should always be SSE register, the destination and mask should be
two registers of the same type, either SSE or AVX. The data addressed by memory
operand is 64–bit in size.

vgatherdpd xmm0,[ebp+xmm1],xmm3 ; gather two doubles

vgatherdpd ymm0,[xmm3*8],ymm5 ; gather four doubles

vgatherqpd loads double precision floating point values addressed by 64–bit indexes.
The destination, index and mask should all be registers of the same type, either SSE or
AVX. The data addressed by memory operand is 64–bit in size.

vpgatherdd and vpgatherqd load 32–bit values addressed by either 32–bit or 64–bit
indexes. They follow the same rules as vgatherdps and vgatherqps respectively.

vpgatherdq and vpgatherqq load 64–bit values addressed by either 32–bit or 64–bit
indexes. They follow the same rules as vgatherdpd and vgatherqpd respectively.

2.1.23 Auxiliary sets of computational instructions

There is a number of additional instruction set extensions related to AVX. They intro-
duce new vector instructions (and sometimes also their SSE equivalents that use classic
instruction encoding), and even some new instructions operating on general registers
that use the AVX–like encoding allowing the extended syntax with separate destination
and source operands. The CPU support for each of these instructions sets needs to be
determined separately.

The AES extension provides a specialized set of instructions for the purpose of
cryptographic computations defined by Advanced Encryption Standard. Each of these

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 65

instructions has two versions: the AVX one and the one with SSE–like syntax that
uses classic encoding. Refer to the Intel manuals for the details of operation of these
instructions.

aesenc and aesenclast perform a single round of AES encryption on data from
first source with a round key from second source, and store result in destination. The
destination and first source are SSE registers, and the second source can be SSE register
or 128–bit memory. The AVX versions of these instructions, vaesenc and vaesenclast,
use the syntax with three operands, while the SSE–like version has only two operands,
with first operand being both the destination and first source.

aesdec and aesdeclast perform a single round of AES decryption on data from
first source with a round key from second source. The syntax rules for them and their
AVX versions are the same as for aesenc.

aesimc performs the InvMixColumns transformation of source operand and store
the result in destination. Both aesimc and vaesimc use only two operands, destination
being SSE register, and source being SSE register or 128–bit memory location.

aeskeygenassist is a helper instruction for generating the round key. It needs three
operands: destination being SSE register, source being SSE register or 128–bit memory,
and third operand being 8–bit immediate value. The AVX version of this instruction
uses the same syntax.

The CLMUL extension introduces just one instruction, pclmulqdq, and its AVX
version as well. This instruction performs a carryless multiplication of two 64–bit values
selected from first and second source according to the bit fields in immediate value.
The destination and first source are SSE registers, second source is SSE register or 128–
bit memory, and immediate value is provided as last operand. vpclmulqdq takes four
operands, while pclmulqdq takes only three operands, with the first one serving both
the role of destination and first source.

The FMA (Fused Multiply–Add) extension introduces additional AVX instructions
which perform multiplication and summation as single operation. Each one takes three
operands, first one serving both the role of destination and first source, and the following
ones being the second and third source. The mnemonic of FMA instruction is obtained
by appending to vf prefix: first either m or nm to select whether result of multiplication
should be taken as–is or negated, then either add or sub to select whether third value
will be added to the product or subtracted from the product, then either 132, 213 or 231
to select which source operands are multiplied and which one is added or subtracted,
and finally the type of data on which the instruction operates, either ps, pd, ss or sd.
As it was with SSE instructions promoted to AVX, instructions operating on packed
floating point values allow 128–bit or 256–bit syntax, in former all the operands are
SSE registers, but the third one can also be a 128–bit memory, in latter the operands
are AVX registers and the third one can also be a 256–bit memory. Instructions that
compute just one floating point result need operands to be SSE registers, and the third
operand can also be a memory, either 32–bit for single precision or 64–bit for double
precision.

66 CHAPTER 2. INSTRUCTION SET

vfmsub231ps ymm1,ymm2,ymm3 ; multiply and subtract

vfnmadd132sd xmm0,xmm5,[ebx] ; multiply, negate and add

In addition to the instructions created by the rule described above, there are families
of instructions with mnemonics starting with either vfmaddsub or vfmsubadd, followed
by either 132, 213 or 231 and then either ps or pd (the operation must always be on
packed values in this case). They add to the result of multiplication or subtract from
it depending on the position of value in packed data – instructions from the vfmaddsub

group add when the position is odd and subtract when the position is even, instructions
from the vfmsubadd group add when the position is even and subtstract when the
position is odd. The rules for operands are the same as for other FMA instructions.

The FMA4 instructions are similar to FMA, but use syntax with four operands and
thus allow destination to be different than all the sources. Their mnemonics are identical
to FMA instructions with the 132, 213 or 231 cut out, as having separate destination
operand makes such selection of operands superfluous. The multiplication is always
performed on values from the first and second source, and then the value from third
source is added or subtracted. Either second or third source can be a memory operand,
and the rules for the sizes of operands are the same as for FMA instructions.

vfmaddpd ymm0,ymm1,[esi],ymm2 ; multiply and add

vfmsubss xmm0,xmm1,xmm2,[ebx] ; multiply and subtract

The F16C extension consists of two instructions, vcvtps2ph and vcvtph2ps, which
convert floating point values between single precision and half precision (the 16–bit float-
ing point format). vcvtps2ph takes three operands: destination, source, and rounding
controls. The third operand is always an immediate, the source is either SSE or AVX
register containing single precision values, and the destination is SSE register or mem-
ory, the size of memory is 64 bits when the source is SSE register and 128 bits when
the source is AVX register. vcvtph2ps takes two operands, the destination that can be
SSE or AVX register, and the source that is SSE register or memory with size of the
half of destination operand’s size.

The AMD XOP extension introduces a number of new vector instructions with en-
coding and syntax analogous to AVX instructions. vfrczps, vfrczss, vfrczpd and
vfrczsd extract fractional portions of single or double precision values, they all take
two operands. The packed operations allow either SSE or AVX register as destination,
for the other two it has to be SSE register. Source can be register of the same type as
destination, or memory of appropriate size (256–bit for destination being AVX register,
128–bit for packed operation with destination being SSE register, 64–bit for operation
on a solitary double precision value and 32–bit for operation on a solitary single precision
value).

vfrczps ymm0,[esi] ; load fractional parts

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 67

vpcmov copies bits from either first or second source into destination depending on
the values of corresponding bits in the fourth operand (the selector). If the bit in
selector is set, the corresponding bit from first source is copied into the same position
in destination, otherwise the bit from second source is copied. Either second source or
selector can be memory location, 128–bit or 256–bit depending on whether SSE registers
or AVX registers are specified as the other operands.

vpcmov xmm0,xmm1,xmm2,[ebx] ; selector in memory

vpcmov ymm0,ymm5,[esi],ymm2 ; source in memory

The family of packed comparison instructions take four operands, the destination and
first source being SSE register, second source being SSE register or 128–bit memory
and the fourth operand being immediate value defining the type of comparison. The
mnemonic or instruction is created by appending to vpcom prefix either b or ub to com-
pare signed or unsigned bytes, w or uw to compare signed or unsigned words, d or ud

to compare signed or unsigned double words, q or uq to compare signed or unsigned
quad words. The respective values from the first and second source are compared and
the corresponding data element in destination is set to either all ones or all zeros de-
pending on the result of comparison. The fourth operand has to specify one of the eight
comparison types (table 2.5). All these instructions have also variants with only three
operands and the type of comparison encoded within the instruction name by inserting
the comparison mnemonic after vpcom.

vpcomb xmm0,xmm1,xmm2,4 ; test for equal bytes

vpcomgew xmm0,xmm1,[ebx] ; compare signed words

Code Mnemonic Description

0 lt less than
1 le less than or equal
2 gt greater than
3 ge greater than or equal
4 eq equal
5 neq not equal
6 false false
7 true true

Table 2.5: XOP comparisons.

vpermil2ps and vpermil2pd set the elements in destination register to zero or to a
value selected from first or second source depending on the corresponding bit fields from
the fourth operand (the selector) and the immediate value provided in fifth operand.
Refer to the AMD manuals for the detailed explanation of the operation performed by

68 CHAPTER 2. INSTRUCTION SET

these instructions. Each of the first four operands can be a register, and either second
source or selector can be memory location, 128–bit or 256–bit depending on whether
SSE registers or AVX registers are used for the other operands.

vpermil2ps ymm0,ymm3,ymm7,ymm2,0 ; permute from two sources

vphaddbw adds pairs of adjacent signed bytes to form 16–bit values and stores them
at the same positions in destination. vphaddubw does the same but treats the bytes
as unsigned. vphaddbd and vphaddubd sum all bytes (either signed or unsigned) in
each four–byte block to 32–bit results, vphaddbq and vphaddubq sum all bytes in each
eight–byte block to 64–bit results, vphaddwd and vphadduwd add pairs of words to 32–
bit results, vphaddwq and vphadduwq sum all words in each four–word block to 64–bit
results, vphadddq and vphaddudq add pairs of double words to 64–bit results. vphsubbw
subtracts in each two–byte block the byte at higher position from the one at lower
position, and stores the result as a signed 16–bit value at the corresponding position
in destination, vphsubwd subtracts in each two–word block the word at higher position
from the one at lower position and makes signed 32–bit results, vphsubdq subtract in
each block of two double word the one at higher position from the one at lower position
and makes signed 64–bit results. Each of these instructions takes two operands, the
destination being SSE register, and the source being SSE register or 128–bit memory.

vphadduwq xmm0,xmm1 ; sum quadruplets of words

vpmacsww and vpmacssww multiply the corresponding signed 16–bit values from the
first and second source and then add the products to the parallel values from the third
source, then vpmacsww takes the lowest 16 bits of the result and vpmacssww saturates
the result down to 16–bit value, and they store the final 16–bit results in the desti-
nation. vpmacsdd and vpmacssdd perform the analogous operation on 32–bit values.
vpmacswd and vpmacsswd do the same calculation only on the low 16–bit values from
each 32–bit block and form the 32–bit results. vpmacsdql and vpmacssdql perform
such operation on the low 32–bit values from each 64–bit block and form the 64–bit
results, while vpmacsdqh and vpmacssdqh do the same on the high 32–bit values from
each 64–bit block, also forming the 64–bit results. vpmadcswd and vpmadcsswd multiply
the corresponding signed 16–bit value from the first and second source, then sum all the
four products and add this sum to each 16–bit element from third source, storing the
truncated or saturated result in destination. All these instructions take four operands,
the second source can be 128–bit memory or SSE register, all the other operands have
to be SSE registers.

vpmacsdd xmm6,xmm1,[ebx],xmm6 ; accumulate product

vpperm selects bytes from first and second source, optionally applies a separate
transformation to each of them, and stores them in the destination. The bit fields
in fourth operand (the selector) specify for each position in destination what byte from

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 69

which source is taken and what operation is applied to it before it is stored there. Refer
to the AMD manuals for the detailed information about these bit fields. This instruction
takes four operands, either second source or selector can be a 128–bit memory (or they
can be SSE registers both), all the other operands have to be SSE registers.

vpshlb, vpshlw, vpshld and vpshlq shift logically bytes, words, double words or
quad words respectively. The amount of bits to shift by is specified for each element
separately by the signed byte placed at the corresponding position in the third operand.
The source containing elements to shift is provided as second operand. Either second
or third operand can be 128–bit memory (or they can be SSE registers both) and the
other operands have to be SSE registers.

vpshld xmm3,xmm1,[ebx] ; shift bytes from xmm1

vpshab, vpshaw, vpshad and vpshaq arithmetically shift bytes, words, double words
or quad words. These instructions follow the same rules as the logical shifts described
above. vprotb, vprotw, vprotd and vprotq rotate bytes, word, double words or quad
words. They follow the same rules as shifts, but additionally allow third operand to
be immediate value, in which case the same amount of rotation is specified for all the
elements in source.

vprotb xmm0,[esi],3 ; rotate bytes to the left

The MOVBE extension introduces just one new instruction, movbe, which swaps
bytes in value from source before storing it in destination, so can be used to load and
store big endian values. It takes two operands, either the destination or source should
be a 16–bit, 32–bit or 64–bit memory (the last one being only allowed in long mode),
and the other operand should be a general register of the same size.

The BMI extension, consisting of two subsets – BMI1 and BMI2, introduces new
instructions operating on general registers, which use the same encoding as AVX in-
structions and so allow the extended syntax. All these instructions use 32–bit operands,
and in long mode they also allow the forms with 64–bit operands.

andn calculates the bitwise AND of second source with the inverted bits of first
source and stores the result in destination. The destination and the first source have to
be general registers, the second source can be general register or memory.

andn edx,eax,[ebx] ; bit-multiply inverted eax with memory

bextr extracts from the first source the sequence of bits using an index and length
specified by bit fields in the second source operand and stores it into destination. The
lowest 8 bits of second source specify the position of bit sequence to extract and the
next 8 bits of second source specify the length of sequence. The first source can be a
general register or memory, the other two operands have to be general registers.

bextr eax,[esi],ecx ; extract bit field from memory

70 CHAPTER 2. INSTRUCTION SET

blsi extracts the lowest set bit from the source, setting all the other bits in desti-
nation to zero. The destination must be a general register, the source can be general
register or memory.

blsi rax,r11 ; isolate the lowest set bit

blsmsk sets all the bits in the destination up to the lowest set bit in the source,
including this bit. blsr copies all the bits from the source to destination except for the
lowest set bit, which is replaced by zero. These instructions follow the same rules for
operands as blsi.

tzcnt counts the number of trailing zero bits, that is the zero bits up to the lowest
set bit of source value. This instruction is analogous to lzcnt and follows the same
rules for operands, so it also has a 16–bit version, unlike the other BMI instructions.

bzhi is BMI2 instruction, which copies the bits from first source to destination,
zeroing all the bits up from the position specified by second source. It follows the same
rules for operands as bextr.

pext uses a mask in second source operand to select bits from first operands and puts
the selected bits as a continuous sequence into destination. pdep performs the reverse
operation – it takes sequence of bits from the first source and puts them consecutively
at the positions where the bits in second source are set, setting all the other bits in
destination to zero. These BMI2 instructions follow the same rules for operands as
andn.

mulx is a BMI2 instruction which performs an unsigned multiplication of value from
EDX or RDX register (depending on the size of specified operands) by the value from
third operand, and stores the low half of result in the second operand, and the high
half of result in the first operand, and it does it without affecting the flags. The third
operand can be general register or memory, and both the destination operands have to
be general registers.

mulx edx,eax,ecx ; multiply edx by ecx into edx:eax

shlx, shrx and sarx are BMI2 instructions, which perform logical or arithmetical
shifts of value from first source by the amount specified by second source, and store the
result in destination without affecting the flags. The have the same rules for operands
as bzhi instruction.

rorx is a BMI2 instruction which rotates right the value from source operand by
the constant amount specified in third operand and stores the result in destination
without affecting the flags. The destination operand has to be general register, the
source operand can be general register or memory, and the third operand has to be an
immediate value.

rorx eax,edx,7 ; rotate without affecting flags

The TBM is an extension designed by AMD to supplement the BMI set. The bextr

instruction is extended with a new form, in which second source is a 32–bit immediate

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 71

Size Registers

128-bit xmm16 xmm17 xmm18 xmm19 xmm20 xmm21 xmm22 xmm23

xmm24 xmm25 xmm26 xmm27 xmm28 xmm29 xmm30 xmm31

256-bit ymm16 ymm17 ymm18 ymm19 ymm20 ymm21 ymm22 ymm23

ymm24 ymm25 ymm26 ymm27 ymm28 ymm29 ymm30 ymm31

512-bit zmm16 zmm17 zmm18 zmm19 zmm20 zmm21 zmm22 zmm23

zmm24 zmm25 zmm26 zmm27 zmm28 zmm29 zmm30 zmm31

Table 2.6: New registers available in long mode with AVX-512.

value. blsic is a new instruction which performs the same operation as blsi, but with
the bits of result reversed. It uses the same rules for operands as blsi. blsfill is a
new instruction, which takes the value from source, sets all the bits below the lowest set
bit and store the result in destination, it also uses the same rules for operands as blsi.

blci, blcic, blcs, blcmsk and blcfill are instructions analogous to blsi, blsic,
blsr, blsmsk and blsfill respectively, but they perform the bit–inverted versions of
the same operations. They follow the same rules for operands as the instructions they
reflect.

tzmsk finds the lowest set bit in value from source operand, sets all bits below it to
1 and all the rest of bits to zero, then writes the result to destination. t1mskc finds the
least significant zero bit in the value from source operand, sets the bits below it to zero
and all the other bits to 1, and writes the result to destination. These instructions have
the same rules for operands as blsi.

2.1.24 AVX–512 instructions

The AVX–512 introduces 512–bit vector registers, which extend the 256–bit registers
used by AVX and AVX2. It also extends the set of vector registers from 16 to 32,
with the additional registers zmm16 to zmm31, their low 256–bit portions ymm16 to ymm31

and their low 128–bit portions xmm16 to xmm31. These additional registers can only be
accessed in the long mode.

In addition to new operand sizes and registers, the AVX–512 introduces a number
of supplementary settings that can be included in the operands of AVX instructions.

The destination operand of the most of AVX instructions can be followed by the
name of an opmask register enclosed in braces, this modifier specifies a mask that
decides which units of data in the destination operand are going to be updated. The
k0 register cannot be used as a destination mask. This setting can be further followed
by {z} modifier to choose that the data units not selected by mask should be zeroed
instead of leaving them unchanged.

vaddpd zmm1{k1},zmm5,zword [rsi] ; update selected floats

vaddps ymm6{k1}{z},ymm12,ymm24 ; update selected, zero other ones

72 CHAPTER 2. INSTRUCTION SET

When an instruction that operates on packed data has a source operand loaded from
a memory, the memory location may be just a single unit of data and the source used for
the operation is created by broadcasting this value into all the units within the required
size. To specify that such broadcasting method is used the memory operand should
be followed by one of the {1to2}, {1to4}, {1to8}, {1to16}, {1to32} and {1to64}

modifiers, selecting the appropriate multiply of a unit.

vsubps zmm1,zmm2,dword [rsi] {1to16} ; subtract from all floats

When an instruction does not use a memory operand often an additional operand
may follow the source operands, containing the rounding mode specifier. When an
instruction has variants that operate on different sizes of data, the rounding mode can
be specified only when the register operands are 512–bit.

vdivps zmm2,zmm3,zmm5,{ru-sae} ; round results up

Operand Description

{rn-sae} round to nearest and suppress all exceptions
{rd-sae} round down and suppress all exceptions
{ru-sae} round up and suppress all exceptions
{rz-sae} round toward zero and suppress all exceptions

Table 2.7: AVX-512 rounding modes.

Some of the instructions do not use a rounding mode but still allow to specify the
exception suppression option with {sae} modifier in the additional operand.

vmaxpd zmm0,zmm1,zmm2,{sae} ; suppress all exceptions

The family of gather instructions in their AVX–512 variants use a new syntax with
only two operands. The opmask register takes the role which was played by the third
operand in the AVX2 syntax and it is mandatory in this case.

vgatherdps xmm0{k1},[eax+xmm1] ; gather four floats

vgatherdpd zmm0{k3},[ymm3*8] ; gather eight doubles

The new family of scatter instructions perform an operation reverse to the one of
gather. They also take two operands, the destination is a memory with vector indexing
and opmask modifier, and the source is a vector register.

vscatterdps [eax+xmm1]{k1},xmm0 ; scatter four floats

vscatterdpd [ymm3*8]{k3},zmm0 ; scatter eight doubles

2.1. THE X86 ARCHITECTURE INSTRUCTIONS 73

2.1.25 Other extensions of instruction set

There is a number of additional instruction set extensions recognized by flat assembler,
and the general syntax of the instructions introduced by those extensions is provided
here. For a detailed information on the operations performed by them, check out the
manuals from Intel (for the VMX, SMX, XSAVE, RDRAND, FSGSBASE, INVPCID,
HLE, RTM, and MPX extensions) or AMD (for the SVM extension).

The Virtual–Machine Extensions (VMX) provide a set of instructions for the man-
agement of virtual machines. The vmxon instruction, which enters the VMX operation,
requires a single 64–bit memory operand, which should be a physical address of memory
region, which the logical processor may use to support VMX operation. The vmxoff

instruction, which leaves the VMX operation, has no operands. The vmlaunch and
vmresume, which launch or resume the virtual machines, and vmcall, which allows
guest software to call the VM monitor, use no operands either.

The vmptrld loads the physical address of current Virtual Machine Control Structure
(VMCS) from its memory operand, vmptrst stores the pointer to current VMCS into
address specified by its memory operand, and vmclear sets the launch state of the
VMCS referenced by its memory operand to clear. These three instruction all require
single 64–bit memory operand.

The vmread reads from VCMS a field specified by the source operand and stores it
into the destination operand. The source operand should be a general purpose register,
and the destination operand can be a register of memory. The vmwrite writes into a
VMCS field specified by the destination operand the value provided by source operand.
The source operand can be a general purpose register or memory, and the destination
operand must be a register. The size of operands for those instructions should be 64–bit
when in long mode, and 32–bit otherwise.

The invept and invvpid invalidate the translation lookaside buffers (TLBs) and
paging–structure caches, either derived from extended page tables (EPT), or based on
the virtual processor identifier (VPID). These instructions require two operands, the first
one being the general purpose register specifying the type of invalidation, and the second
one being a 128–bit memory operand providing the invalidation descriptor. The first
operand should be a 64–bit register when in long mode, and 32–bit register otherwise.

The Safer Mode Extensions (SMX) provide the functionalities available throught
the getsec instruction. This instruction takes no operands, and the function that is
executed is determined by the contents of EAX register upon executing this instruction.

The Secure Virtual Machine (SVM) is a variant of virtual machine extension used by
AMD. The skinit instruction securely reinitializes the processor allowing the startup
of trusted software, such as the virtual machine monitor (VMM). This instruction takes
a single operand, which must be EAX, and provides a physical address of the secure
loader block (SLB).

The vmrun instruction is used to start a guest virtual machine, its only operand
should be an accumulator register (AX, EAX or RAX, the last one available only in

74 CHAPTER 2. INSTRUCTION SET

long mode) providing the physical address of the virtual machine control block (VMCB).
The vmsave stores a subset of processor state into VMCB specified by its operand, and
vmload loads the same subset of processor state from a specified VMCB. The same
operand rules as for the vmrun apply to those two instructions.

vmmcall allows the guest software to call the VMM. This instruction takes no
operands.

stgi set the global interrupt flag to 1, and clgi zeroes it. These instructions take
no operands.

invlpga invalidates the TLB mapping for a virtual page specified by the first operand
(which has to be accumulator register) and address space identifier specified by the
second operand (which must be ECX register).

The XSAVE set of instructions allows to save and restore processor state components.
xsave and xsaveopt store the components of processor state defined by bit mask in EDX
and EAX registers into area defined by memory operand. xrstor restores from the area
specified by memory operand the components of processor state defined by mask in
EDX and EAX. The xsave64, xsaveopt64 and xrstor64 are 64–bit versions of these
instructions, allowed only in long mode.

xgetbv read the contents of 64–bit XCR (extended control register) specified in ECX
register into EDX and EAX registers. xsetbv writes the contents of EDX and EAX into
the 64–bit XCR specified by ECX register. These instructions have no operands.

The RDRAND extension introduces one new instruction, rdrand, which loads the
hardware–generated random value into general register. It takes one operand, which
can be 16–bit, 32–bit or 64–bit register (with the last one being allowed only in long
mode).

The FSGSBASE extension adds long mode instructions that allow to read and write
the segment base registers for FS and GS segments. rdfsbase and rdgsbase read the
corresponding segment base registers into operand, while wrfsbase and wrgsbase write
the value of operand into those register. All these instructions take one operand, which
can be 32–bit or 64–bit general register.

The INVPCID extension adds invpcid instruction, which invalidates mapping in
the TLBs and paging caches based on the invalidation type specified in first operand
and PCID invalidate descriptor specified in second operand. The first operands should
be 32–bit general register when not in long mode, or 64–bit general register when in
long mode. The second operand should be 128–bit memory location.

The HLE and RTM extensions provide set of instructions for the transactional man-
agement. The xacquire and xrelease are new prefixes that can be used with some of
the instructions to start or end lock elision on the memory address specified by prefixed
instruction. The xbegin instruction starts the transactional execution, its operand is
the address a fallback routine that gets executes in case of transaction abort, specified
like the operand for near jump instruction. xend marks the end of transcational execu-
tion region, it takes no operands. xabort forces the transaction abort, it takes an 8–bit
immediate value as its only operand, this value is passed in the highest bits of EAX to

2.2. CONTROL DIRECTIVES 75

the fallback routine. xtest checks whether there is transactional execution in progress,
this instruction takes no operands.

The MPX extension adds instructions that operate on new bounds registers and aid
in checking the memory references. For some of these instructions flat assemblers allows
a special syntax that allows a fine control over their operation, where an address of a
memory operand is separated into two parts with a comma. With bndmk instruction
the first part of such address specifies the lower bound and the second one the upper
bound. The lower bound can be either zero or a register, the upper bound can be any
address that uses no more than one register (multiplied by 1, 2, 4, or 8). The addressing
registers need to be 64–bit when in long mode, and 32–bit otherwise.

bndmk bnd0,[rbx,100000h] ; lower bound in register, upper directly

bndmk bnd1,[0,rbx] ; lower bound zero, upper in register

In case of bndldx and bndstx, the first part of memory operand specifies an address
used to access a bound table entry, while the second part is either zero or a register that
plays a role of an additional operand for such instruction. The address in the first part
may use no more than one register and the register cannot be multiplied by a number
other than 1.

bndstx [rcx,rsi],bnd3 ; store bnd3 and rsi at rcx in the bound table

bndldx bnd2,[rcx,rsi] ; load from bound table if entry matches rsi

2.2 Control directives

This section describes the directives that control the assembly process, they are pro-
cessed during the assembly and may cause some blocks of instructions to be assembled
differently or not assembled at all.

2.2.1 Numerical constants

The = directive allows to define the numerical constant. It should be preceded by the
name for the constant and followed by the numerical expression providing the value.
The value of such constants can be a number or an address, but – unlike labels –
the numerical constants are not allowed to hold the register–based addresses. Besides
this difference, in their basic variant numerical constants behave very much like labels
and you can even forward–reference them (access their values before they actually get
defined).

There is, however, a second variant of numerical constants, which is recognized by
assembler when you try to define the constant of name, under which there already was a
numerical constant defined. In such case assembler treats that constant as an assembly–
time variable and allows it to be assigned with new value, but forbids forward–referencing
it (for obvious reasons). Let’s see both the variant of numerical constants in one example:

76 CHAPTER 2. INSTRUCTION SET

dd sum

x = 1

x = x+2

sum = x

Here the x is an assembly–time variable, and every time it is accessed, the value that was
assigned to it the most recently is used. Thus if we tried to access the x before it gets
defined the first time, like if we wrote dd x in place of the dd sum instruction, it would
cause an error. And when it is re–defined with the x = x+2 directive, the previous value
of x is used to calculate the new one. So when the sum constant gets defined, the x has
value of 3, and this value is assigned to the sum. Since this one is defined only once in
source, it is the standard numerical constant, and can be forward–referenced. So the
dd sum is assembled as dd 3. To read more about how the assembler is able to resolve
this, see section 2.2.6.

The value of numerical constant can be preceded by size operator, which can ensure
that the value will fit in the range for the specified size, and can affect also how some
of the calculations inside the numerical expression are performed. This example:

c8 = byte -1

c32 = dword -1

defines two different constants, the first one fits in 8 bits, the second one fits in 32 bits.
When you need to define constant with the value of address, which may be register–

based (and thus you cannot employ numerical constant for this purpose), you can use
the extended syntax of label directive (already described in section 1.2.3), like:

label myaddr at ebp+4

which declares label placed at ebp+4 address. However remember that labels, unlike
numerical constants, cannot become assembly–time variables.

2.2.2 Conditional assembly

if directive causes some block of instructions to be assembled only under certain con-
dition. It should be followed by logical expression specifying the condition, instructions
in next lines will be assembled only when this condition is met, otherwise they will
be skipped. The optional else if directive followed with logical expression specifying
additional condition begins the next block of instructions that will be assembled if pre-
vious conditions were not met, and the additional condition is met. The optional else
directive begins the block of instructions that will be assembled if all the conditions
were not met. The end if directive ends the last block of instructions.

You should note that if directive is processed at assembly stage and therefore it
doesn’t affect any preprocessor directives, like the definitions of symbolic constants and

2.2. CONTROL DIRECTIVES 77

macroinstructions – when the assembler recognizes the if directive, all the preprocessing
has been already finished.

The logical expression consist of logical values and logical operators. The logical
operators are ~ for logical negation, & for logical and, | for logical or. The negation has
the highest priority. Logical value can be a numerical expression, it will be false if it
is equal to zero, otherwise it will be true. Two numerical expression can be compared
using one of the following operators to make the logical value: = (equal), < (less), >

(greater), <= (less or equal), >= (greater or equal), <> (not equal).
The used operator followed by a symbol name, is the logical value that checks

whether the given symbol is used somewhere (it returns correct result even if symbol is
used only after this check). The defined operator can be followed by any expression,
usually just by a single symbol name; it checks whether the given expression contains
only symbols that are defined in the source and accessible from the current position.
The definite operator does a similar check with restriction to symbols defined before
current position in source.

With relativeto operator it is possible to check whether values of two expressions
differ only by constant amount. The valid syntax is a numerical expression followed by
relativeto and then another expression (possibly register-based). Labels that have no
simple numerical value can be tested this way to determine what kind of operations may
be possible with them.

The following simple example uses the count constant that should be defined some-
where in source:

if count>0

mov cx,count

rep movsb

end if

These two assembly instructions will be assembled only if the count constant is greater
than 0. The next sample shows more complex conditional structure:

if count & ~ count mod 4

mov cx,count/4

rep movsd

else if count>4

mov cx,count/4

rep movsd

mov cx,count mod 4

rep movsb

else

mov cx,count

rep movsb

end if

78 CHAPTER 2. INSTRUCTION SET

The first block of instructions gets assembled when the count is non zero and divisible
by four, if this condition is not met, the second logical expression, which follows the
else if, is evaluated and if it’s true, the second block of instructions get assembled,
otherwise the last block of instructions, which follows the line containing only else, is
assembled.

There are also operators that allow comparison of values being any chains of symbols.
The eq compares whether two such values are exactly the same. The in operator checks
whether given value is a member of the list of values following this operator, the list
should be enclosed between < and > characters, its members should be separated with
commas. The symbols are considered the same when they have the same meaning for
the assembler – for example pword and fword for assembler are the same and thus
are not distinguished by the above operators. In the same way 16 eq 10h is the true
condition, however 16 eq 10+4 is not.

The eqtype operator checks whether the two compared values have the same struc-
ture, and whether the structural elements are of the same type. The distinguished types
include numerical expressions, individual quoted strings, floating point numbers, address
expressions (the expressions enclosed in square brackets or preceded by ptr operator),
instruction mnemonics, registers, size operators, jump type and code type operators.
And each of the special characters that act as a separators, like comma or colon, is
the separate type itself. For example, two values, each one consisting of register name
followed by comma and numerical expression, will be regarded as of the same type, no
matter what kind of register and how complicated numerical expression is used; with
exception for the quoted strings and floating point values, which are the special kinds of
numerical expressions and are treated as different types. Thus eax,16 eqtype fs,3+7

condition is true, but eax,16 eqtype eax,1.6 is false.

2.2.3 Repeating blocks of instructions

times directive repeats one instruction specified number of times. It should be followed
by numerical expression specifying number of repeats and the instruction to repeat
(optionally colon can be used to separate number and instruction). When special symbol
% is used inside the instruction, it is equal to the number of current repeat. For example
times 5 db % will define five bytes with values 1, 2, 3, 4, 5. Recursive use of times
directive is also allowed, so times 3 times % db % will define six bytes with values 1,
1, 2, 1, 2, 3.

repeat directive repeats the whole block of instructions. It should be followed by
numerical expression specifying number of repeats. Instructions to repeat are expected
in next lines, ended with the end repeat directive, for example:

repeat 8

mov byte [bx],%

inc bx

end repeat

2.2. CONTROL DIRECTIVES 79

The generated code will store byte values from one to eight in the memory addressed
by BX register.

Number of repeats can be zero, in that case the instructions are not assembled at
all.

The break directive allows to stop repeating earlier and continue assembly from
the first line after the end repeat. Combined with the if directive it allows to stop
repeating under some special condition, like:

s = x/2

repeat 100

if x/s = s

break

end if

s = (s+x/s)/2

end repeat

The while directive repeats the block of instructions as long as the condition specified
by the logical expression following it is true. The block of instructions to be repeated
should end with the end while directive. Before each repetition the logical expression
is evaluated and when its value is false, the assembly is continued starting from the first
line after the end while. Also in this case the % symbol holds the number of current
repeat. The break directive can be used to stop this kind of loop in the same way as
with repeat directive. The previous sample can be rewritten to use the while instead
of repeat this way:

s = x/2

while x/s <> s

s = (s+x/s)/2

if % = 100

break

end if

end while

The blocks defined with if, repeat and while can be nested in any order, however
they should be closed in the same order in which they were started. The break directive
always stops processing the block that was started last with either the repeat or while
directive.

2.2.4 Addressing spaces

org directive sets address at which the following code is expected to appear in memory.
It should be followed by numerical expression specifying the address. This directive
begins the new addressing space, the following code itself is not moved in any way, but
all the labels defined within it and the value of $ symbol are affected as if it was put

80 CHAPTER 2. INSTRUCTION SET

at the given address. However it’s the responsibility of programmer to put the code at
correct address at run–time.

The load directive allows to define constant with a binary value loaded from the
already assembled code. This directive should be followed by the name of the constant,
then optionally size operator, then from operator and a numerical expression specifying
a valid address in current addressing space. The size operator has unusual meaning in
this case – it states how many bytes (up to 8) have to be loaded to form the binary
value of constant. If no size operator is specified, one byte is loaded (thus value is in
range from 0 to 255). The loaded data cannot exceed current offset.

The store directive can modify the already generated code by replacing some of
the previously generated data with the value defined by given numerical expression,
which follows. The expression can be preceded by the optional size operator to specify
how large value the expression defines, and therefore how much bytes will be stored, if
there is no size operator, the size of one byte is assumed. Then the at operator and
the numerical expression defining the valid address in current addressing code space, at
which the given value have to be stored should follow. This is a directive for advanced
appliances and should be used carefully.

Both load and store directives in their basic variant (defined above) are limited to
operate on places in current addressing space. The $$ symbol is always equal to the
base address of current addressing space, and the $ symbol is the address of current
position in that addressing space, therefore these two values define limits of the area,
where load and store can operate.

Combining the load and store directives allows to do things like encoding some of
the already generated code. For example to encode the whole code generated in current
addressing space you can use such block of directives:

repeat $-$$

load a byte from $$+%-1

store byte a xor c at $$+%-1

end repeat

and each byte of code will be xored with the value defined by c constant.
virtual defines virtual data at specified address. This data will not be included

in the output file, but labels defined there can be used in other parts of source. This
directive can be followed by at operator and the numerical expression specifying the
address for virtual data, otherwise is uses current address, the same as virtual at $.
Instructions defining data are expected in next lines, ended with end virtual directive.
The block of virtual instructions itself is an independent addressing space, after it’s
ended, the context of previous addressing space is restored.

The virtual directive can be used to create union of some variables, for example:

GDTR dp ?

virtual at GDTR

2.2. CONTROL DIRECTIVES 81

GDT_limit dw ?

GDT_address dd ?

end virtual

It defines two labels for parts of the 48–bit variable at GDTR address.
It can be also used to define labels for some structures addressed by a register, for

example:

virtual at bx

LDT_limit dw ?

LDT_address dd ?

end virtual

With such definition instruction mov ax,[LDT_limit] will be assembled to the same
instruction as mov ax,[bx].

Declaring defined data values or instructions inside the virtual block could also be
useful, because the load directive may be used to load the values from the virtually
generated code into a constants. This directive in its basic version should be used after
the code it loads but before the virtual block ends, because it can only load the values
from the same addressing space. For example:

virtual at 0

xor eax,eax

and edx,eax

load zeroq dword from 0

end virtual

The above piece of code will define the zeroq constant containing four bytes of the
machine code of the instructions defined inside the virtual block. This method can be
also used to load some binary value from external file. For example this code:

virtual at 0

file ’a.txt’:10h,1

load char from 0

end virtual

loads the single byte from offset 10h in file a.txt into the char constant.
Instead of or in addition to an at argument, virtual can also be followed by an

”as” keyword and a string defining an extension of additional file where the initialized
content of the block is going to be stored at the end of a successful assembly.

virtual at 0 as ’asc’

times 256 db %-1

end virtual

82 CHAPTER 2. INSTRUCTION SET

Any of the section directives described in 2.4 also begins a new addressing space.
It is possible to declare a special kind of label that marks the current addressing

space, by appending a double colon instead of a single one after a label name. This
symbol cannot then be used in numerical expressions, the only place where it is allowed
to use it is the extended syntax of load and store directives. It is possible to make these
directives operate on a different addressing space than the current one, by specifying
address with the two components: first the name of a special label that marks the
addressing space, followed by the colon character and a numerical expression defining
a valid address inside that addressing space. In the following example this extended
syntax is used to load the value from a block after it has been closed:

virtual at 0

hex_digits::

db ’0123456789ABCDEF’

end virtual

load a byte from hex_digits:10

This way it is possible to operate on values inside any code block, including all the ones
defined with virtual. However it is not allowed to specify addressing space that has
not been assembled yet, just as it is not allowed to specify an address in the current
addressing space that exceeds the current offset. The addresses in any other addressing
space are also limited by the boundaries of the block.

The virtual directive can have a previously defined addressing space label as the
only argument. This variant allows to extend a previously defined and closed block with
additional data. Any definition of data within an extending block is going to have the
same effect as if that definition was present in the original virtual block.

virtual at 0 as ’log’

Log::

end virtual

virtual Log

db ’Hello!’,13,10

end virtual

2.2.5 Other directives

align directive aligns code or data to the specified boundary. It should be followed
by a numerical expression specifying the number of bytes, to the multiply of which the
current address has to be aligned. The boundary value has to be the power of two.

The align directive fills the bytes that had to be skipped to perform the alignment
with the nop instructions and at the same time marks this area as uninitialized data, so
if it is placed among other uninitialized data that wouldn’t take space in the output file,

2.2. CONTROL DIRECTIVES 83

the alignment bytes will act the same way. If you need to fill the alignment area with
some other values, you can combine align with virtual to get the size of alignment
needed and then create the alignment yourself, like:

virtual

align 16

a = $ - $$

end virtual

db a dup 0

The a constant is defined to be the difference between address after alignment and
address of the virtual block (see previous section), so it is equal to the size of needed
alignment space.

display directive displays the message at the assembly time. It should be followed
by the quoted strings or byte values, separated with commas. It can be used to display
values of some constants, for example:

bits = 16

display ’Current offset is 0x’

repeat bits/4

d = ’0’ + $ shr (bits-%*4) and 0Fh

if d > ’9’

d = d + ’A’-’9’-1

end if

display d

end repeat

display 13,10

This block of directives calculates the four hexadecimal digits of 16–bit value and con-
verts them into characters for displaying. Note that this will not work if the adresses in
current addressing space are relocatable (as it might happen with PE or object output
formats), since only absolute values can be used this way. The absolute value may be
obtained by calculating the relative address, like $-$$, or rva $ in case of PE format.

The err directive immediately terminates the assembly process when it is encoun-
tered by assembler.

The assert directive tests whether the logical expression that follows it is true, and
if not, it signalizes the error.

2.2.6 Multiple passes

Because the assembler allows to reference some of the labels or constants before they
get actually defined, it has to predict the values of such labels and if there is even a
suspicion that prediction failed in at least one case, it does one more pass, assembling

84 CHAPTER 2. INSTRUCTION SET

the whole source, this time doing better prediction based on the values the labels got
in the previous pass.

The changing values of labels can cause some instructions to have encodings of
different length, and this can cause the change in values of labels again. And since the
labels and constants can also be used inside the expressions that affect the behavior
of control directives, the whole block of source can be processed completely differently
during the new pass. Thus the assembler does more and more passes, each time trying
to do better predictions to approach the final solution, when all the values get predicted
correctly. It uses various method for predicting the values, which has been chosen to
allow finding in a few passes the solution of possibly smallest length for the most of the
programs.

Some of the errors, like the values not fitting in required boundaries, are not signaled
during those intermediate passes, since it may happen that when some of the values
are predicted better, these errors will disappear. However if assembler meets some
illegal syntax construction or unknown instruction, it always stops immediately. Also
defining some label more than once causes such error, because it makes the predictions
groundless.

Only the messages created with the display directive during the last performed pass
get actually displayed. In case when the assembly has been stopped due to an error,
these messages may reflect the predicted values that are not yet resolved correctly.

The solution may sometimes not exist and in such cases the assembler will never
manage to make correct predictions – for this reason there is a limit for a number of
passes, and when assembler reaches this limit, it stops and displays the message that it
is not able to generate the correct output. Consider the following example:

if ~ defined alpha

alpha:

end if

The defined operator gives the true value when the expression following it could be
calculated in this place, what in this case means that the alpha label is defined some-
where. But the above block causes this label to be defined only when the value given
by defined operator is false, what leads to an antynomy and makes it impossible to re-
solve such code. When processing the if directive assembler has to predict whether the
alpha label will be defined somewhere (it wouldn’t have to predict only if the label was
already defined earlier in this pass), and whatever the prediction is, the opposite always
happens. Thus the assembly will fail, unless the alpha label is defined somewhere in
source preceding the above block of instructions – in such case, as it was already noted,
the prediction is not needed and the block will just get skipped.

The above sample might have been written as a try to define the label only when it
was not yet defined. It fails, because the defined operator does check whether the label
is defined anywhere, and this includes the definition inside this conditionally processed

2.2. CONTROL DIRECTIVES 85

block. It could be easily corrected by using definite operator instead of defined. But
there is also another modification that could get it resolved:

if ~ defined alpha | defined @f

alpha:

@@:

end if

The @f is always the same label as the nearest @@ symbol in the source following it,
so the above sample would mean the same if any unique name was used instead of the
anonymous label. When alpha is not defined in any other place in source, the only
possible solution is when this block gets defined, and this time this doesn’t lead to the
antynomy, because of the anonymous label which makes this block self–establishing.
To better understand this, look at the blocks that has nothing more than this self-
establishing:

if defined @f

@@:

end if

This is an example of source that may have more than one solution, as both cases
when this block gets processed or not are equally correct. Which one of those two
solutions we get depends on the algorithm on the assembler, in case of flat assembler –
on the algorithm of predictions. Back to the previous sample, when alpha is not defined
anywhere else, the condition for if block cannot be false, so we are left with only one
possible solution, and we can hope the assembler will arrive at it. On the other hand,
when alpha is defined in some other place, we’ve got two possible solutions again, but
one of them causes alpha to be defined twice, and such an error causes assembler to
abort the assembly immediately, as this is the kind of error that deeply disturbs the
process of resolving. So we can get such source either correctly resolved or causing an
error, and what we get may depend on the internal choices made by the assembler.

However there are some facts about such choices that are certain. When assembler
has to check whether the given symbol is defined and it was already defined in the
current pass, no prediction is needed – it was already noted above. And when the given
symbol has been defined never before, including all the already finished passes, the
assembler predicts it to be not defined. Knowing this, we can expect that the simple self–
establishing block shown above will not be assembled at all and that the previous sample
will resolve correctly when alpha is defined somewhere before our conditional block,
while it will itself define alpha when it’s not already defined earlier, thus potentially
causing the error because of double definition if the alpha is also defined somewhere
later.

The used operator may be expected to behave in a similar manner in analogous
cases, however any other kinds of predictions may not be so simple and you should
never rely on them this way.

86 CHAPTER 2. INSTRUCTION SET

The err directive, usually used to stop the assembly when some condition is met,
stops the assembly immediately, regardless of whether the current pass is final or in-
termediate. So even when the condition that caused this directive to be interpreted is
mispredicted and temporary, and would eventually disappear in the later passes, the
assembly is stopped anyway.

The assert directive signalizes the error only if its expression is false after all the
symbols have been resolved. You can use assert 0 in place of err when you do not
want to have assembly stopped during the intermediate passes.

2.3 Preprocessor directives

All preprocessor directives are processed before the main assembly process, and therefore
are not affected by the control directives. At this time also all comments are stripped
out.

2.3.1 Including source files

include directive includes the specified source file at the position where it is used. It
should be followed by the quoted name of file that should be included, for example:

include ’macros.inc’

The whole included file is preprocessed before preprocessing the lines next to the line
containing the include directive. There are no limits to the number of included files as
long as they fit in memory.

The quoted path can contain environment variables enclosed within % characters,
they will be replaced with their values inside the path, both the \ and / characters are
allowed as a path separators. The file is first searched for in the directory containing
file which included it and when it is not found there, the search is continued in the
directories specified in the environment variable called INCLUDE (the multiple paths
separated with semicolons can be defined there, they will be searched in the same order
as specified). If file was not found in any of these places, preprocessor looks for it in the
directory containing the main source file (the one specified in command line). These
rules concern also paths given with the file directive.

2.3.2 Symbolic constants

The symbolic constants are different from the numerical constants, before the assem-
bly process they are replaced with their values everywhere in source lines after their
definitions, and anything can become their values.

The definition of symbolic constant consists of name of the constant followed by the
equ directive. Everything that follows this directive will become the value of constant.

2.3. PREPROCESSOR DIRECTIVES 87

If the value of symbolic constant contains other symbolic constants, they are replaced
with their values before assigning this value to the new constant. For example:

d equ dword

NULL equ d 0

d equ edx

After these three definitions the value of NULL constant is dword 0 and the value of d is
edx. So, for example, push NULL will be assembled as push dword 0 and push d will
be assembled as push edx. And if then the following line was put:

d equ d,eax

the d constant would get the new value of edx,eax. This way the growing lists of
symbols can be defined.

restore directive allows to get back previous value of redefined symbolic constant.
It should be followed by one more names of symbolic constants, separated with commas.
So restore d after the above definitions will give d constant back the value edx, the
second one will restore it to value dword, and one more will revert d to original meaning
as if no such constant was defined. If there was no constant defined of given name,
restore will not cause an error, it will be just ignored.

Symbolic constant can be used to adjust the syntax of assembler to personal prefer-
ences. For example the following set of definitions provides the handy shortcuts for all
the size operators:

b equ byte

w equ word

d equ dword

p equ pword

f equ fword

q equ qword

t equ tword

x equ dqword

y equ qqword

Because symbolic constant may also have an empty value, it can be used to allow
the syntax with offset word before any address value:

offset equ

After this definition mov ax,offset char will be valid construction for copying the
offset of char variable into ax register, because offset is replaced with an empty value,
and therefore ignored.

The define directive followed by the name of constant and then the value, is the
alternative way of defining symbolic constant. The only difference between define and

88 CHAPTER 2. INSTRUCTION SET

equ is that define assigns the value as it is, it does not replace the symbolic constants
with their values inside it.

Symbolic constants can also be defined with the fix directive, which has the same
syntax as equ, but defines constants of high priority – they are replaced with their sym-
bolic values even before processing the preprocessor directives and macroinstructions,
the only exception is fix directive itself, which has the highest possible priority, so it
allows redefinition of constants defined this way.

The fix directive can be used for syntax adjustments related to directives of pre-
processor, what cannot be done with equ directive. For example:

incl fix include

defines a short name for include directive, while the similar definition done with equ

directive wouldn’t give such result, as standard symbolic constants are replaced with
their values after searching the line for preprocessor directives.

2.3.3 Macroinstructions

macro directive allows you to define your own complex instructions, called macroinstruc-
tions, using which can greatly simplify the process of programming. In its simplest form
it’s similar to symbolic constant definition. For example the following definition defines
a shortcut for the test al,0xFF instruction:

macro tst {test al,0xFF}

After the macro directive there is a name of macroinstruction and then its contents en-
closed between the { and } characters. You can use tst instruction anywhere after this
definition and it will be assembled as test al,0xFF. Defining symbolic constant tst of
that value would give the similar result, but the difference is that the name of macroin-
struction is recognized only as an instruction mnemonic. Also, macroinstructions are
replaced with corresponding code even before the symbolic constants are replaced with
their values. So if you define macroinstruction and symbolic constant of the same name,
and use this name as an instruction mnemonic, it will be replaced with the contents of
macroinstruction, but it will be replaced with value if symbolic constant if used some-
where inside the operands.

The definition of macroinstruction can consist of many lines, because { and } char-
acters don’t have to be in the same line as macro directive. For example:

macro stos0

{

xor al,al

stosb

}

2.3. PREPROCESSOR DIRECTIVES 89

The macroinstruction stos0 will be replaced with these two assembly instructions any-
where it’s used.

Like instructions which needs some number of operands, the macroinstruction can
be defined to need some number of arguments separated with commas. The names
of needed argument should follow the name of macroinstruction in the line of macro

directive and should be separated with commas if there is more than one. Anywhere
one of these names occurs in the contents of macroinstruction, it will be replaced with
corresponding value, provided when the macroinstruction is used. Here is an example
of a macroinstruction that will do data alignment for binary output format:

macro align value { rb (value-1)-($+value-1) mod value }

When the align 4 instruction is found after this macroinstruction is defined, it will be
replaced with contents of this macroinstruction, and the value will there become 4, so
the result will be rb (4-1)-($+4-1) mod 4.

If a macroinstruction is defined that uses an instruction with the same name in-
side its definition, the previous meaning of this name is used. Useful redefinition of
macroinstructions can be done in that way, for example:

macro mov op1,op2

{

if op1 in <ds,es,fs,gs,ss> & op2 in <cs,ds,es,fs,gs,ss>

push op2

pop op1

else

mov op1,op2

end if

}

This macroinstruction extends the syntax of mov instruction, allowing both operands to
be segment registers. For example mov ds,es will be assembled as push es and pop ds.
In all other cases the standard mov instruction will be used. The syntax of this mov can
be extended further by defining next macroinstruction of that name, which will use the
previous macroinstruction:

macro mov op1,op2,op3

{

if op3 eq

mov op1,op2

else

mov op1,op2

mov op2,op3

end if

}

90 CHAPTER 2. INSTRUCTION SET

It allows mov instruction to have three operands, but it can still have two operands
only, because when macroinstruction is given less arguments than it needs, the rest of
arguments will have empty values. When three operands are given, this macroinstruction
will become two macroinstructions of the previous definition, so mov es,ds,dx will be
assembled as push ds, pop es and mov ds,dx.

By placing the * after the name of argument you can mark the argument as required
– preprocessor will not allow it to have an empty value. For example the above macroin-
struction could be declared as macro mov op1*,op2*,op3 to make sure that first two
arguments will always have to be given some non empty values.

Alternatively, you can provide the default value for argument, by placing the =

followed by value after the name of argument. Then if the argument has an empty value
provided, the default value will be used instead.

When it’s needed to provide macroinstruction with argument that contains some
commas, such argument should be enclosed between < and > characters. If it contains
more than one < character, the same number of > should be used to tell that the value
of argument ends.

When the name of the last argument of macroinstruction is followed by & character,
this argument consumes everything up to the end of line, including commas.

purge directive allows removing the last definition of specified macroinstruction. It
should be followed by one or more names of macroinstructions, separated with commas.
If such macroinstruction has not been defined, you will not get any error. For exam-
ple after having the syntax of mov extended with the macroinstructions defined above,
you can disable syntax with three operands back by using purge mov directive. Next
purge mov will disable also syntax for two operands being segment registers, and all the
next such directives will do nothing.

If after the macro directive you enclose a group of argument declarations in square
brackets, it will allow giving more values for this group of arguments when using that
macroinstruction. Any additional argument following the last argument of such group
will start the new group and will become the first argument of it. For this reason
after the closing square bracket no more argument names can follow. The contents of
macroinstruction will be processed for each such group of arguments separately. The
simplest example is to enclose one argument name in square brackets:

macro stoschar [char]

{

mov al,char

stosb

}

This macroinstruction accepts unlimited number of arguments, and each one will be
processed into these two instructions separately. For example stoschar 1,2,3 will be
assembled as the following instructions:

mov al,1

2.3. PREPROCESSOR DIRECTIVES 91

stosb

mov al,2

stosb

mov al,3

stosb

There are some special directives available only inside the definitions of macroin-
structions. local directive defines local names, which will be replaced with unique
values each time the macroinstruction is used. It should be followed by names sepa-
rated with commas. If the name given as parameter to local directive begins with a
dot or two dots, the unique labels generated by each evaluation of macroinstruction will
have the same properties. This directive is usually needed for the constants or labels
that macroinstruction defines and uses internally. For example:

macro movstr

{

local move

move:

lodsb

stosb

test al,al

jnz move

}

Each time this macroinstruction is used, move will become other unique name in its
instructions, so you will not get an error you normally get when some label is defined
more than once.

forward, reverse and common directives divide macroinstruction into blocks, each
one processed after the processing of previous is finished. They differ in behavior only
if macroinstruction allows multiple groups of arguments. Block of instructions that
follows forward directive is processed for each group of arguments, from first to last
– exactly like the default block (not preceded by any of these directives). Block that
follows reverse directive is processed for each group of argument in reverse order – from
last to first. Block that follows common directive is processed only once, commonly for
all groups of arguments. Local name defined in one of the blocks is available in all the
following blocks when processing the same group of arguments as when it was defined,
and when it is defined in common block it is available in all the following blocks not
depending on which group of arguments is processed.

Here is an example of macroinstruction that will create the table of addresses to
strings followed by these strings:

macro strtbl name,[string]

{

common

92 CHAPTER 2. INSTRUCTION SET

label name dword

forward

local label

dd label

forward

label db string,0

}

First argument given to this macroinstruction will become the label for table of ad-
dresses, next arguments should be the strings. First block is processed only once and
defines the label, second block for each string declares its local name and defines the
table entry holding the address to that string. Third block defines the data of each
string with the corresponding label.

The directive starting the block in macroinstruction can be followed by the first
instruction of this block in the same line, like in the following example:

macro stdcall proc,[arg]

{

reverse push arg

common call proc

}

This macroinstruction can be used for calling the procedures using STDCALL conven-
tion, which has all the arguments pushed on stack in the reverse order. For example
stdcall foo,1,2,3 will be assembled as:

push 3

push 2

push 1

call foo

If some name inside macroinstruction has multiple values (it is either one of the
arguments enclosed in square brackets or local name defined in the block following
forward or reverse directive) and is used in block following the common directive,
it will be replaced with all of its values, separated with commas. For example the
following macroinstruction will pass all of the additional arguments to the previously
defined stdcall macroinstruction:

macro invoke proc,[arg]

{ common stdcall [proc],arg }

It can be used to call indirectly (by the pointer stored in memory) the procedure using
STDCALL convention.

Inside macroinstruction also special operator # can be used. This operator causes
two names to be concatenated into one name. It can be useful, because it’s done

2.3. PREPROCESSOR DIRECTIVES 93

after the arguments and local names are replaced with their values. The following
macroinstruction will generate the conditional jump according to the cond argument:

macro jif op1,cond,op2,label

{

cmp op1,op2

j#cond label

}

For example jif ax,ae,10h,exit will be assembled as cmp ax,10h and jae exit in-
structions.

The # operator can be also used to concatenate two quoted strings into one. Also
conversion of name into a quoted string is possible, with the ‘ operator, which likewise
can be used inside the macroinstruction. It converts the name that follows it into a
quoted string – but note, that when it is followed by a macro argument which is being
replaced with value containing more than one symbol, only the first of them will be
converted, as the ‘ operator converts only one symbol that immediately follows it.
Here’s an example of utilizing those two features:

macro label name

{

label name

if ~ used name

display ‘name # " is defined but not used.",13,10

end if

}

When label defined with such macro is not used in the source, macro will warn you with
the message, informing to which label it applies.

To make macroinstruction behaving differently when some of the arguments are
of some special type, for example a quoted strings, you can use eqtype comparison
operator. Here’s an example of utilizing it to distinguish a quoted string from an other
argument.

macro message arg

{

if arg eqtype ""

local str

jmp @f

str db arg,0Dh,0Ah,24h

@@:

mov dx,str

else

mov dx,arg

94 CHAPTER 2. INSTRUCTION SET

end if

mov ah,9

int 21h

}

The above macro is designed for displaying messages in DOS programs. When the
argument of this macro is some number, label, or variable, the string from that address
is displayed, but when the argument is a quoted string, the created code will display
that string followed by the carriage return and line feed.

It is also possible to put a declaration of macroinstruction inside another macroin-
struction, so one macro can define another, but there is a problem with such definitions
caused by the fact, that } character cannot occur inside the macroinstruction, as it
always means the end of definition. To overcome this problem, the escaping of symbols
inside macroinstruction can be used. This is done by placing one or more backslashes in
front of any other symbol (even the special character). Preprocessor sees such sequence
as a single symbol, but each time it meets such symbol during the macroinstruction pro-
cessing, it cuts the backslash character from the front of it. For example \} is treated as
single symbol, but during processing of the macroinstruction it becomes the } symbol.
This allows to put one definition of macroinstruction inside another:

macro ext instr

{

macro instr op1,op2,op3

\{

if op3 eq

instr op1,op2

else

instr op1,op2

instr op2,op3

end if

\}

}

ext add

ext sub

The macro ext is defined correctly, but when it is used, the \{ and \} become the {

and } symbols. So when the ext add is processed, the contents of macro becomes valid
definition of a macroinstruction and this way the add macro becomes defined. In the
same way ext sub defines the sub macro. The use of \{ symbol wasn’t really necessary
here, but is done this way to make the definition more clear.

If some directives specific to macroinstructions, like local or common are needed
inside some macro embedded this way, they can be escaped in the same way. Escaping

2.3. PREPROCESSOR DIRECTIVES 95

the symbol with more than one backslash is also allowed, which allows multiple levels
of nesting the macroinstruction definitions.

The another technique for defining one macroinstruction by another is to use the fix
directive, which becomes useful when some macroinstruction only begins the definition
of another one, without closing it. For example:

macro tmacro [params]

{

common macro params {

}

MACRO fix tmacro

ENDM fix }

defines an alternative syntax for defining macroinstructions, which looks like:

MACRO stoschar char

mov al,char

stosb

ENDM

Note that symbol that has such customized definition must be defined with fix directive,
because only the prioritized symbolic constants are processed before the preprocessor
looks for the } character while defining the macro. This might be a problem if one
needed to perform some additional tasks one the end of such definition, but there is
one more feature which helps in such cases. Namely it is possible to put any directive,
instruction or macroinstruction just after the } character that ends the macroinstruction
and it will be processed in the same way as if it was put in the next line.

The postpone directive can be used to define a special type of macroinstruction
that has no name or arguments and will get automatically called when the preprocessor
reaches the end of source:

postpone

{

code_size = $

}

It is a very simplified kind of macroinstruction and it simply delegates a block of in-
structions to be put at the end.

2.3.4 Structures

struc directive is a special variant of macro directive that is used to define data struc-
tures. Macroinstruction defined using the struc directive must be preceded by a label

96 CHAPTER 2. INSTRUCTION SET

(like the data definition directive) when it’s used. This label will be also attached at
the beginning of every name starting with dot in the contents of macroinstruction. The
macroinstruction defined using the struc directive can have the same name as some
other macroinstruction defined using the macro directive, structure macroinstruction
will not prevent the standard macroinstruction from being processed when there is no
label before it and vice versa. All the rules and features concerning standard macroin-
structions apply to structure macroinstructions.

Here is the sample of structure macroinstruction:

struc point x,y

{

.x dw x

.y dw y

}

For example my point 7,11 will define structure labeled my, consisting of two variables:
my.x with value 7 and my.y with value 11.

If somewhere inside the definition of structure the name consisting of a single dot it
found, it is replaced by the name of the label for the given instance of structure and this
label will not be defined automatically in such case, allowing to completely customize
the definition. The following example utilizes this feature to extend the data definition
directive db with ability to calculate the size of defined data:

struc db [data]

{

common

. db data

.size = $ - .

}

With such definition msg db ’Hello!’,13,10 will define also msg.size constant, equal
to the size of defined data in bytes.

Defining data structures addressed by registers or absolute values should be done
using the virtual directive with structure macroinstruction (see 2.2.5).

restruc directive removes the last definition of the structure, just like purge does
with macroinstructions and restore with symbolic constants. It also has the same syn-
tax – should be followed by one or more names of structure macroinstructions, separated
with commas.

2.3.5 Repeating macroinstructions

The rept directive is a special kind of macroinstruction, which makes given amount of
duplicates of the block enclosed with braces. The basic syntax is rept directive followed
by number and then block of source enclosed between the { and } characters. The
simplest example:

2.3. PREPROCESSOR DIRECTIVES 97

rept 5 { in al,dx }

will make five duplicates of the in al,dx line. The block of instructions is defined in the
same way as for the standard macroinstruction and any special operators and directives
which can be used only inside macroinstructions are also allowed here. When the given
count is zero, the block is simply skipped, as if you defined macroinstruction but never
used it. The number of repetitions can be followed by the name of counter symbol,
which will get replaced symbolically with the number of duplicate currently generated.
So this:

rept 3 counter

{

byte#counter db counter

}

will generate lines:

byte1 db 1

byte2 db 2

byte3 db 3

The repetition mechanism applied to rept blocks is the same as the one used to process
multiple groups of arguments for macroinstructions, so directives like forward, common
and reverse can be used in their usual meaning. Thus such macroinstruction:

rept 7 num { reverse display ‘num }

will display digits from 7 to 1 as text. The local directive behaves in the same way as
inside macroinstruction with multiple groups of arguments, so:

rept 21

{

local label

label: loop label

}

will generate unique label for each duplicate.
The counter symbol by default counts from 1, but you can declare different base

value by placing the number preceded by colon immediately after the name of counter.
For example:

rept 8 n:0 { pxor xmm#n,xmm#n }

will generate code which will clear the contents of eight SSE registers. You can define
multiple counters separated with commas, and each one can have different base.

98 CHAPTER 2. INSTRUCTION SET

The number of repetitions and the base values for counters can be specified using
the numerical expressions with operator rules identical as in the case of assembler.
However each value used in such expression must either be a directly specified number,
or a symbolic constant with value also being an expression that can be calculated by
preprocessor (in such case the value of expression associated with symbolic constant is
calculated first, and then substituted into the outer expression in place of that constant).
If you need repetitions based on values that can only be calculated at assembly time,
use one of the code repeating directives that are processed by assembler, see section
2.2.3.

The irp directive iterates the single argument through the given list of parameters.
The syntax is irp followed by the argument name, then the comma and then the list
of parameters. The parameters are specified in the same way like in the invocation of
standard macroinstruction, so they have to be separated with commas and each one can
be enclosed with the < and > characters. Also the name of argument may be followed
by * to mark that it cannot get an empty value. Such block:

irp value, 2,3,5

{ db value }

will generate lines:

db 2

db 3

db 5

The irps directive iterates through the given list of symbols, it should be followed by the
argument name, then the comma and then the sequence of any symbols. Each symbol
in this sequence, no matter whether it is the name symbol, symbol character or quoted
string, becomes an argument value for one iteration. If there are no symbols following
the comma, no iteration is done at all. This example:

irps reg, al bx ecx

{ xor reg,reg }

will generate lines:

xor al,al

xor bx,bx

xor ecx,ecx

The irpv directive iterates through all of the values that were assigned to the given
symbolic variable. It should be followed by the argument name and the name of symbolic
variable, separated with comma. When the symbolic variable is treated with restore

directive to remove its latest value, that value is removed from the list of values accessed
by irpv. But any modifications made to that list during the iterations performed by

2.3. PREPROCESSOR DIRECTIVES 99

irpv (by either defining a new value for symbolic variable, or destroying the value with
restore directive) do not affect the operation performed by this directive - the list that
gets iterated reflects the state of symbolic variable at the time when irpv directive was
encountered. For example this snippet restores a symbolic variable called d to its initial
state, before any values were assigned to it:

irpv value, d

{ restore d }

It simply generates as many copies of restore directive, as many values there are to
remove.

The blocks defined by the irp, irps and irpv directives are also processed in the
same way as any macroinstructions, so operators and directives specific to macroinstruc-
tions may be freely used also in this case.

2.3.6 Conditional preprocessing

match directive causes some block of source to be preprocessed and passed to assembler
only when the given sequence of symbols matches the specified pattern. The pattern
comes first, ended with comma, then the symbols that have to be matched with the
pattern, and finally the block of source, enclosed within braces as macroinstruction.

There are the few rules for building the expression for matching, first is that any
of symbol characters and any quoted string should be matched exactly as is. In this
example:

match +,+ { include ’first.inc’ }

match +,- { include ’second.inc’ }

the first file will get included, since + after comma matches the + in pattern, and the
second file will not be included, since there is no match.

To match any other symbol literally, it has to be preceded by = character in the
pattern. Also to match the = character itself, or the comma, the == and =, constructions
have to be used. For example the =a== pattern will match the a= sequence.

If some name symbol is placed in the pattern, it matches any sequence consisting
of at least one symbol and then this name is replaced with the matched sequence ev-
erywhere inside the following block, analogously to the parameters of macroinstruction.
For instance:

match a-b, 0-7

{ dw a,b-a }

will generate the dw 0,7-0 instruction. Each name is always matched with as few
symbols as possible, leaving the rest for the following ones, so in this case:

match a b, 1+2+3 { db a }

100 CHAPTER 2. INSTRUCTION SET

the a name will match the 1 symbol, leaving the +2+3 sequence to be matched with b.
But in this case:

match a b, 1 { db a }

there will be nothing left for b to match, so the block will not get processed at all.
The block of source defined by match is processed in the same way as any macroin-

struction, so any operators specific to macroinstructions can be used also in this case.
What makes ”match” directive more useful is the fact, that it replaces the symbolic

constants with their values in the matched sequence of symbols (that is everywhere after
comma up to the beginning of the source block) before performing the match. Thanks
to this it can be used for example to process some block of source under the condition
that some symbolic constant has the given value, like:

match =TRUE, DEBUG { include ’debug.inc’ }

which will include the file only when the symbolic constant DEBUG was defined with value
TRUE.

2.3.7 Order of processing

When combining various features of the preprocessor, it’s important to know the order
in which they are processed. As it was already noted, the highest priority has the fix

directive and the replacements defined with it. This is done completely before doing
any other preprocessing, therefore this piece of source:

V fix {

macro empty

V

V fix }

V

becomes a valid definition of an empty macroinstruction. It can be interpreted that the
fix directive and prioritized symbolic constants are processed in a separate stage, and
all other preprocessing is done after on the resulting source.

The standard preprocessing that comes after, on each line begins with recognition of
the first symbol. It starts with checking for the preprocessor directives, and when none
of them is detected, preprocessor checks whether the first symbol is macroinstruction.
If no macroinstruction is found, it moves to the second symbol of line, and again begins
with checking for directives, which in this case is only the equ directive, as this is the
only one that occurs as the second symbol in line. If there is no directive, the second
symbol is checked for the case of structure macroinstruction and when none of those
checks gives the positive result, the symbolic constants are replaced with their values
and such line is passed to the assembler.

To see it on the example, assume that there is defined the macroinstruction called
foo and the structure macroinstruction called bar. Those lines:

2.3. PREPROCESSOR DIRECTIVES 101

foo equ

foo bar

would be then both interpreted as invocations of macroinstruction foo, since the mean-
ing of the first symbol overrides the meaning of second one.

When the macroinstruction generates the new lines from its definition block, in every
line it first scans for macroinstruction directives, and interpretes them accordingly. All
the other content in the definition block is used to brew the new lines, replacing the
parameters with their values and then processing the symbol escaping and # and ‘

operators. The conversion operator has the higher priority than concatenation and if
any of them operates on the escaped symbol, the escaping is cancelled before finishing the
operation. After this is completed, the newly generated line goes through the standard
preprocessing, as described above.

Though the symbolic constants are usually only replaced in the lines, where no pre-
processor directives nor macroinstructions has been found, there are some special cases
where those replacements are performed in the parts of lines containing directives. First
one is the definition of symbolic constant, where the replacements are done everywhere
after the equ keyword and the resulting value is then assigned to the new constant (see
2.3.2). The second such case is the match directive, where the replacements are done in
the symbols following comma before matching them with pattern. These features can
be used for example to maintain the lists, like this set of definitions:

list equ

macro append item

{

match any, list \{ list equ list,item \}

match , list \{ list equ item \}

}

The list constant is here initialized with empty value, and the append macroinstruction
can be used to add the new items into this list, separating them with commas. The
first match in this macroinstruction occurs only when the value of list is not empty (see
2.3.6), in such case the new value for the list is the previous one with the comma and
the new item appended at the end. The second match happens only when the list is still
empty, and in such case the list is defined to contain just the new item. So starting with
the empty list, the append 1 would define list equ 1 and the append 2 following it
would define list equ 1,2. One might then need to use this list as the parameters to
some macroinstruction. But it cannot be done directly – if foo is the macroinstruction,
then foo list would just pass the list symbol as a parameter to macro, since symbolic
constants are not unrolled at this stage. For this purpose again match directive comes
in handy:

match params, list { foo params }

102 CHAPTER 2. INSTRUCTION SET

The value of list, if it’s not empty, matches the params keyword, which is then replaced
with matched value when generating the new lines defined by the block enclosed with
braces. So if the list had value 1,2, the above line would generate the line containing
foo 1,2, which would then go through the standard preprocessing.

The other special case is in the parameters of rept directive. The amount of repeti-
tions and the base value for counter can be specified using numerical expressions, and if
there is a symbolic constant with non–numerical name used in such an expression, pre-
processor tries to evaluate its value as a numerical expression and if succeeds, it replaces
the symbolic constant with the result of that calculation and continues to evaluate the
primary expression. If the expression inside that symbolic constants also contains some
symbolic constants, preprocessor will try to calculate all the needed values recursively.

This allows to perform some calculations at the time of preprocessing, as long as all
the values used are the numbers known at the preprocessing stage. A single repetition
with rept can be used for the sole purpose of calculating some value, like in this example:

define a b+4

define b 3

rept 1 result:a*b+2 { define c result }

To compute the base value for result counter, preprocessor replaces the b with its value
and recursively calculates the value of a, obtaining 7 as the result, then it calculates
the main expression with the result being 23. The c then gets defined with the first
value of counter (because the block is processed just one time), which is the result of the
computation, so the value of c is simple 23 symbol. Note that if b is later redefined with
some other numerical value, the next time and expression containing a is calculated, the
value of a will reflect the new value of b, because the symbolic constant contains just
the text of the expression.

There is one more special case – when preprocessor goes to checking the second
symbol in the line and it happens to be the colon character (what is then interpreted by
assembler as definition of a label), it stops in this place and finishes the preprocessing of
the first symbol (so if it’s the symbolic constant it gets unrolled) and if it still appears
to be the label, it performs the standard preprocessing starting from the place after
the label. This allows to place preprocessor directives and macroinstructions after the
labels, analogously to the instructions and directives processed by assembler, like:

start: include ’start.inc’

However if the label becomes broken during preprocessing (for example when it is the
symbolic constant with empty value), only replacing of the symbolic constants is con-
tinued for the rest of line.

It should be remembered, that the jobs performed by preprocessor are the prelimi-
nary operations on the texts symbols, that are done in a simple single pass before the
main process of assembly. The text that is the result of preprocessing is passed to as-
sembler, and it then does its multiple passes on it. Thus the control directives, which

2.4. FORMATTER DIRECTIVES 103

are recognized and processed only by the assembler – as they are dependent on the
numerical values that may even vary between passes – are not recognized in any way by
the preprocessor and have no effect on the preprocessing. Consider this example source:

if 0

a = 1

b equ 2

end if

dd b

When it is preprocessed, they only directive that is recognized by the preprocessor is the
equ, which defines symbolic constant b, so later in the source the b symbol is replaced
with the value 2. Except for this replacement, the other lines are passes unchanged to
the assembler. So after preprocessing the above source becomes:

if 0

a = 1

end if

dd 2

Now when assembler processes it, the condition for the if is false, and the a constant
doesn’t get defined. However symbolic constant b was processed normally, even though
its definition was put just next to the one of a. So because of the possible confusion
you should be very careful every time when mixing the features of preprocessor and
assembler - in such cases it is important to realize what the source will become after the
preprocessing, and thus what the assembler will see and do its multiple passes on.

2.4 Formatter directives

These directives are actually also a kind of control directives, with the purpose of con-
trolling the format of generated code.

format directive followed by the format identifier allows to select the output format.
This directive should be put at the beginning of the source. Default output format
is a flat binary file, it can also be selected by using format binary directive. This
directive can be followed by the as keyword and the quoted string specifying the default
file extension for the output file. Unless the output file name was specified from the
command line, assembler will use this extension when generating the output file.

use16 and use32 directives force the assembler to generate 16–bit or 32–bit code,
omitting the default setting for selected output format. use64 enables generating the
code for the long mode of x86–64 processors.

Below are described different output formats with the directives specific to these
formats.

104 CHAPTER 2. INSTRUCTION SET

2.4.1 MZ executable

To select the MZ output format, use format MZ directive. The default code setting for
this format is 16–bit.

segment directive defines a new segment, it should be followed by label, which value
will be the number of defined segment, optionally use16 or use32 word can follow to
specify whether code in this segment should be 16–bit or 32–bit. The origin of segment
is aligned to paragraph (16 bytes). All the labels defined then will have values relative
to the beginning of this segment.

entry directive sets the entry point for MZ executable, it should be followed by
the far address (name of segment, colon and the offset inside segment) of desired entry
point.

stack directive sets up the stack for MZ executable. It can be followed by numerical
expression specifying the size of stack to be created automatically or by the far address
of initial stack frame when you want to set up the stack manually. When no stack is
defined, the stack of default size 4096 bytes will be created.

heap directive should be followed by a 16–bit value defining maximum size of addi-
tional heap in paragraphs (this is heap in addition to stack and undefined data). Use
heap 0 to always allocate only memory program really needs. Default size of heap is
65535.

2.4.2 Portable Executable

To select the Portable Executable output format, use format PE directive, it can be
followed by additional format settings: first the target subsystem setting, which can be
console or GUI for Windows applications, native for Windows drivers, EFI, EFIboot
or EFIruntime for the UEFI, it may be followed by the minimum version of system
that the executable is targeted to (specified in form of floating-point value). Optional
DLL and WDM keywords mark the output file as a dynamic link library and WDM driver
respectively, the large keyword marks the executable as able to handle addresses larger
than 2 GB and the NX keyword signalizes that the executable conforms to the restriction
of not executing code residing in non-executable sections.

After those settings can follow the at operator and the numerical expression spec-
ifying the base of PE image and then optionally on operator followed by the quoted
string containing file name selects custom MZ stub for PE program (when specified file
is not a MZ executable, it is treated as a flat binary executable file and converted into
MZ format). The default code setting for this format is 32–bit. The example of fully
featured PE format declaration:

format PE GUI 4.0 DLL at 7000000h on ’stub.exe’

To create PE file for the x86–64 architecture, use PE64 keyword instead of PE in the
format declaration, in such case the long mode code is generated by default.

2.4. FORMATTER DIRECTIVES 105

section directive defines a new section, it should be followed by quoted string
defining the name of section, then one or more section flags can follow. Available
flags are: code, data, readable, writeable, executable, shareable, discardable,
notpageable. The origin of section is aligned to page (4096 bytes). Example declaration
of PE section:

section ’.text’ code readable executable

Among with flags also on of special PE data identifiers can be specified to mark the
whole section as a special data, possible identifiers are export, import, resource and
fixups. If the section is marked to contain fixups, they are generated automatically and
no more data needs to be defined in this section. Also resource data can be generated
automatically from the resource file, it can be achieved by writing the from operator
and quoted file name after the resource identifier. Below are the examples of sections
containing some special PE data:

section ’.reloc’ data readable discardable fixups

section ’.rsrc’ data readable resource from ’my.res’

entry directive sets the entry point for Portable Executable, the value of entry point
should follow.

stack directive sets up the size of stack for Portable Executable, value of stack
reserve size should follow, optionally value of stack commit separated with comma can
follow. When stack is not defined, it’s set by default to size of 4096 bytes.

heap directive chooses the size of heap for Portable Executable, value of heap reserve
size should follow, optionally value of heap commit separated with comma can follow.
When no heap is defined, it is set by default to size of 65536 bytes, when size of heap
commit is unspecified, it is by default set to zero.

data directive begins the definition of special PE data, it should be followed by one
of the data identifiers (export, import, resource or fixups) or by the number of data
entry in PE header. The data should be defined in next lines, ended with end data

directive. When fixups data definition is chosen, they are generated automatically and
no more data needs to be defined there. The same applies to the resource data when
the resource identifier is followed by from operator and quoted file name – in such case
data is taken from the given resource file.

The rva operator can be used inside the numerical expressions to obtain the RVA
of the item addressed by the value it is applied to, that is the offset relative to the base
of PE image.

2.4.3 Common Object File Format

To select Common Object File Format, use format COFF or format MS COFF directive,
depending whether you want to create classic (DJGPP) or Microsoft’s variant of COFF
file. The default code setting for this format is 32-bit. To create the file in Microsoft’s

106 CHAPTER 2. INSTRUCTION SET

COFF format for the x86-64 architecture, use format MS64 COFF setting, in such case
long mode code is generated by default.

section directive defines a new section, it should be followed by quoted string defin-
ing the name of section, then one or more section flags can follow. Section flags avail-
able for both COFF variants are code and data, while flags readable, writeable,
executable, shareable, discardable, notpageable, linkremove and linkinfo are
available only with Microsoft’s COFF variant.

By default section is aligned to double word (four bytes), in case of Microsoft COFF
variant other alignment can be specified by providing the align operator followed by
alignment value (any power of two up to 8192) among the section flags.

extrn directive defines the external symbol, it should be followed by the name of
symbol and optionally the size operator specifying the size of data labeled by this symbol.
The name of symbol can be also preceded by quoted string containing name of the
external symbol and the as operator. Some example declarations of external symbols:

extrn exit

extrn ’__imp__MessageBoxA@16’ as MessageBox:dword

public directive declares the existing symbol as public, it should be followed by the
name of symbol, optionally it can be followed by the as operator and the quoted string
containing name under which symbol should be available as public. Some examples of
public symbols declarations:

public main

public start as ’_start’

Additionally, with COFF format it’s possible to specify exported symbol as static, it’s
done by preceding the name of symbol with the static keyword.

When using the Microsoft’s COFF format, the rva operator can be used inside the
numerical expressions to obtain the RVA of the item addressed by the value it is applied
to.

2.4.4 Executable and Linkable Format

To select ELF output format, use format ELF directive. The default code setting for
this format is 32–bit. To create ELF file for the x86–64 architecture, use format ELF64

directive, in such case the long mode code is generated by default.
section directive defines a new section, it should be followed by quoted string defin-

ing the name of section, then can follow one or both of the executable and writeable

flags, optionally also align operator followed by the number specifying the alignment
of section (it has to be the power of two), if no alignment is specified, the default value
is used, which is 4 or 8, depending on which format variant has been chosen.

extrn and public directives have the same meaning and syntax as when the COFF
output format is selected (described in previous section).

2.4. FORMATTER DIRECTIVES 107

The rva operator can be used also in the case of this format (however not when
target architecture is x86–64), it converts the address into the offset relative to the
GOT table, so it may be useful to create position-independent code. There’s also a
special plt operator, which allows to call the external functions through the Procedure
Linkage Table. You can even create an alias for external function that will make it
always be called through PLT, with the code like:

extrn ’printf’ as _printf

printf = PLT _printf

To create executable file, follow the format choice directive with the executable or
dynamic keyword and optionally the number specifying the brand of the target operat-
ing system (for example value 3 would mark the executable for Linux system). With this
format selected it is allowed to use entry directive followed by the value to set as entry
point of program. On the other hand it makes extrn and public directives unavailable,
and instead of section there should be the segment directive used, followed by one or
more segment permission flags and optionally a marker of special ELF executable seg-
ment, which can be interpreter, dynamic, note, gnuehframe, gnustack or gnurelro.
Available permission flags are: readable, writeable and executable. The origin of a
non-special segment is aligned to page (4096 bytes).

108 CHAPTER 2. INSTRUCTION SET

Chapter 3

Windows programming

With the Windows version of flat assembler comes the package of standard includes
designed to help in writing the programs for Windows environment.

The includes package contains the headers for 32–bit and 64–bit Windows program-
ming in the root folder and the specialized includes in the subfolders. In general, the
headers include the required specialized files for you, though sometimes you might prefer
to include some of the macroinstruction packages yourself (since few of them are not
included by some or even all of the headers).

There are six headers for 32–bit Windows that you can choose from, with names
starting with win32 followed by either a letter a for using the ASCII encoding, or a
letter w for the WideChar encoding. The win32a.inc and win32w.inc are the basic
headers, the win32ax.inc and win32wx.inc are the extended headers, they provide
more advanced macroinstructions, those extensions will be discussed separately. Finally
the win32axp.inc and win32wxp.inc are the same extended headers with enabled fea-
ture of checking the count of parameters in procedure calls.

There are analogous six packages for the 64–bit Windows, with names starting with
win64. They provide in general the same functionality as the ones for 32–bit Windows,
with just a few differences explained later.

You can include the headers any way you prefer, by providing the full path or using
the custom environment variable, but the simplest method is to define the INCLUDE

environment variable properly pointing to the directory containing headers and then
include them just like:

include ’win32a.inc’

It’s important to note that all macroinstructions, as opposed to internal directives of
flat assembler, are case sensitive and the lower case is used for the most of them. If you’d
prefer to use the other case than default, you should do the appropriate adjustments
with fix directive.

109

110 CHAPTER 3. WINDOWS PROGRAMMING

3.1 Basic headers

The basic headers win32a.inc, win32w.inc, win64a.inc and win64w.inc include the
declarations of Windows equates and structures and provide the standard set of macroin-
structions.

3.1.1 Structures

All headers enable the struct macroinstruction, which allows to define structures in
a way more similar to other assemblers than the struc directive. The definition of
structure should be started with struct macroinstruction followed by the name, and
ended with ends macroinstruction. In lines between only data definition directives are
allowed, with labels being the pure names for the fields of structure:

struct POINT

x dd ?

y dd ?

ends

With such definition this line:

point1 POINT

will declare the point1 structure with the point1.x and point1.y fields, giving them
the default values – the same ones as provided in the definition of structure (in this case
the defaults are both uninitialized values). But declaration of structure also accepts
the parameters, in the same count as the number of fields in the structure, and those
parameters, when specified, override the default values for fields. For example:

point2 POINT 10,20

initializes the point2.x field with value 10, and the point2.y with value 20.
The struct macro not only enables to declare the structures of given type, but also

defines labels for offsets of fields inside the structure and constants for sized of every field
and the whole structure. For example the above definition of POINT structure defines
the POINT.x and POINT.y labels to be the offsets of fields inside the structure, and
sizeof.POINT.x, sizeof.POINT.y and sizeof.POINT as sizes of the corresponding
fields and of the whole structure. The offset labels may be used for accessing the
structures addressed indirectly, like:

mov eax,[ebx+POINT.x]

when the ebx register contains the pointer to POINT structure. Note that field size
checking will be performed with such accessing as well.

The structures itself are also allowed inside the structure definitions, so the structures
may have some other structures as a fields:

3.1. BASIC HEADERS 111

struct LINE

start POINT

end POINT

ends

When no default values for substructure fields are specified, as in this example, the
defaults from the definition of the type of substructure apply.

Since value for each field is a single parameter in the declaration of the structure,
to initialize the substructures with custom values the parameters for each substructure
must be grouped into a single parameter for the structure:

line1 LINE <0,0>,<100,100>

This declaration initializes each of the line1.start.x and line1.start.y fields with
0, and each of the line1.end.x and line1.end.y with 100.

When the size of data defined by some value passed to the declaration structure is
smaller than the size of corresponding field, it is padded to that size with undefined
bytes (and when it is larger, the error happens). For example:

struct FOO

data db 256 dup (?)

ends

some FOO <"ABC",0>

fills the first four bytes of some.data with defined values and reserves the rest.
Inside the structures also unions and unnamed substructures can be defined. The

definition of union should start with union and end with ends, like in this example:

struct BAR

field_1 dd ?

union

field_2 dd ?

field_2b db ?

ends

ends

Each of the fields defined inside union has the same offset and they share the same
memory. Only the first field of union is initialized with given value, the values for
the rest of fields are ignored (however if one of the other fields requires more memory
than the first one, the union is padded to the required size with undefined bytes). The
whole union is initialized by the single parameter given in structure declaration, and
this parameter gives value to the first field of union.

The unnamed substructure is defined in a similar way to the union, only starts with
the struct line instead of union, like:

112 CHAPTER 3. WINDOWS PROGRAMMING

struct WBB

word dw ?

struct

byte1 db ?

byte2 db ?

ends

ends

Such substructure only takes one parameter in the declaration of whole structure to
define its values, and this parameter can itself be the group of parameters defining each
field of the substructure. So the above type of structure may get declared like:

my WBB 1,<2,3>

The fields inside unions and unnamed substructures are accessed just as if the were
directly the fields of the parent structure. For example with above declaration my.byte1

and my.byte2 are correct labels for the substructure fields.
The substructures and unions can be nested with no limits for the nesting depth:

struct LINE

union

start POINT

struct

x1 dd ?

y1 dd ?

ends

ends

union

end POINT

struct

x2 dd ?

y2 dd ?

ends

ends

ends

The definition of structure may also be based on some of the already defined structure
types and it inherits all the fields from that structure, for example:

struct CPOINT POINT

color dd ?

ends

defines the same structure as:

3.1. BASIC HEADERS 113

struct CPOINT

x dd ?

y dd ?

color dd ?

ends

All headers define the CHAR data type, which can be used to define character strings
in the data structures.

3.1.2 Imports

The import macroinstructions help to build the import data for PE file (usually put in
the separate section). There are two macroinstructions for this purpose. The first one
is called library, must be placed directly in the beginning of the import data and it
defines from what libraries the functions will be imported. It should be followed by any
amount of the pairs of parameters, each pair being the label for the table of imports from
the given library, and the quoted string defining the name of the library. For example:

library kernel32,’KERNEL32.DLL’,\

user32,’USER32.DLL’

declares to import from the two libraries. For each of libraries, the table of imports
must be then declared somewhere inside the import data. This is done with import

macroinstruction, which needs first parameter to define the label for the table (the
same as declared earlier to the library macro), and then the pairs of parameters each
containing the label for imported pointer and the quoted string defining the name of
function exactly as exported by library. For example the above library declaration
may be completed with following import declarations:

import kernel32,\

ExitProcess,’ExitProcess’

import user32,\

MessageBeep,’MessageBeep’,\

MessageBox,’MessageBoxA’

The labels defined by first parameters in each pair passed to the import macro address
the double word pointers, which after loading the PE are filled with the addresses to
exported procedures.

Instead of quoted string for the name of procedure to import, the number may be
given to define import by ordinal, like:

import custom,\

ByName,’FunctionName’,\

ByOrdinal,17

114 CHAPTER 3. WINDOWS PROGRAMMING

The import macros optimize the import data, so only imports for functions that
are used somewhere in program are placed in the import tables, and if some import
table would be empty this way, the whole library is not referenced at all. For this
reason it’s handy to have the complete import table for each library – the package
contains such tables for some of the standard libraries, they are stored in the APIA and
APIW subdirectories and import the ASCII and WideChar variants of the API functions.
Each file contains one import table, with lowercase label the same as the name of the file.
So the complete tables for importing from the KERNEL32.DLL and USER32.DLL libraries
can be defined this way (assuming your INCLUDE environment variable points to the
directory containing the includes package):

library kernel32,’KERNEL32.DLL’,\

user32,’USER32.DLL’

include ’apia\kernel32.inc’

include ’apiw\user32.inc’

3.1.3 Procedures (32–bit)

Headers for 32–bit Windows provide four macroinstructions for calling procedures with
parameters passed on stack. The stdcall calls directly the procedure specified by the
first argument using the STDCALL calling convention. The rest of arguments passed to
macro define the parameters to procedure and are stored on the stack in reverse order.
The invoke macro does the same, however it calls the procedure indirectly, through the
pointer labelled by the first argument. Thus invoke can be used to call the procedures
through pointers defined in the import tables. This line:

invoke MessageBox,0,szText,szCaption,MB_OK

is equivalent to:

stdcall [MessageBox],0,szText,szCaption,MB_OK

and they both generate this code:

push MB_OK

push szCaption

push szText

push 0

call [MessageBox]

The ccall and cinvoke are analogous to the stdcall and invoke, but they should
be used to call the procedures that use the C calling convention, where the stack frame
has to be restored by the caller.

To define the procedure that uses the stack for parameters and local variables, you
should use the proc macroinstruction. In its simplest form it has to be followed by the
name for the procedure and then names for the all the parameters it takes, like:

3.1. BASIC HEADERS 115

proc WindowProc,hwnd,wmsg,wparam,lparam

The comma between the name of procedure and the first parameter is optional. The
procedure instructions should follow in the next lines, ended with the endp macroin-
struction. The stack frame is set up automatically on the entry to procedure, the EBP
register is used as a base to access the parameters, so you should avoid using this register
for other purposes. The names specified for the parameters are used to define EBP-based
labels, which you can use to access the parameters as regular variables. For example
the mov eax,[hwnd] instruction inside the procedure defined as in above sample, is
equivalent to mov eax,[ebp+8]. The scope of those labels is limited to the procedure,
so you may use the same names for other purposes outside the given procedure.

Since any parameters are pushed on the stack as double words when calling such
procedures, the labels for parameters are defined to mark the double word data by
default, however you can you specify the sizes for the parameters if you want, by following
the name of parameter with colon and the size operator. The previous sample can be
rewritten this way, which is again equivalent:

proc WindowProc,hwnd:DWORD,wmsg:DWORD,wparam:DWORD,lparam:DWORD

If you specify a size smaller than double word, the given label applies to the smaller
portion of the whole double word stored on stack. If you you specify a larger size, like
far pointer of quad word, the two double word parameters are defined to hold this value,
but are labelled as one variable.

The name of procedure can be also followed by either the stdcall or c keyword to
define the calling convention it uses. When no such type is specified, the default is used,
which is equivalent to STDCALL. Then also the uses keyword may follow, and after
it the list of registers (separated only with spaces) that will be automatically stored on
entry to procedure and restored on exit. In this case the comma after the list of registers
and before the first parameter is required. So the fully featured procedure statement
might look like this:

proc WindowProc stdcall uses ebx esi edi,\

hwnd:DWORD,wmsg:DWORD,wparam:DWORD,lparam:DWORD

To declare the local variable you can use the local macroinstruction, followed by
one or more declarations separated with commas, each one consisting of the name for
variable followed by colon and the type of variable – either one of the standard types
(must be upper case) or the name of data structure. For example:

local hDC:DWORD,rc:RECT

To declare a local array, you can follow the name of variable by the size of array enclosed
in square brackets, like:

local str[256]:BYTE

116 CHAPTER 3. WINDOWS PROGRAMMING

The other way to define the local variables is to declare them inside the block started
with ”locals” macroinstruction and ended with ”endl”, in this case they can be defined
just like regular data. This declaration is the equivalent of the earlier sample:

locals

hDC dd ?

rc RECT

endl

The local variables can be declared anywhere inside the procedure, with the only lim-
itation that they have to be declared before they are used. The scope of labels for
the variables defined as local is limited to inside the procedure, you can use the same
names for other purposes outside the procedure. If you give some initialized values to
the variables declared as local, the macroinstruction generates the instructions that will
initialize these variables with the given values and puts these instructions at the same
position in procedure, where the declaration is placed.

The ret placed anywhere inside the procedure, generates the complete code needed
to correctly exit the procedure, restoring the stack frame and the registers used by
procedure. If you need to generate the raw return instruction, use the retn mnemonic,
or follow the ret with the number parameter, what also causes it to be interpreted as
single instruction.

To recapitulate, the complete definition of procedure may look like this:

proc WindowProc uses ebx esi edi,hwnd,wmsg,wparam,lparam

local hDC:DWORD,rc:RECT

; the instructions

ret

endp

3.1.4 Procedures (64–bit)

In 64–bit Windows there is only one calling convention, and thus only two macroin-
structions for calling procedures are provided. The fastcall calls directly the proce-
dure specified by the first argument using the standard convention of 64–bit Windows
system. The invoke macro does the same, but indirectly, through the pointer labelled
by the first argument. Parameters are provided by the arguments that follow, and they
can be of any size up to 64 bits. The macroinstructions use RAX register as a temporary
storage when some parameter value cannot be copied directly into the stack using the
mov instruction. If the parameter is preceded with addr word, it is treated as an address
and is calculated with the lea instruction – so if the address is absolute, it will get
calculated as RIP-relative, thus preventing generating a relocation in case of file with
fixups.

Because in 64–bit Windows the floating–point parameters are passed in a different
way, they have to be marked by preceding each one of them with float word. They can

3.1. BASIC HEADERS 117

be either double word or quad word in size. Here is an example of calling some OpenGL
procedures with either double–precision or single–precision parameters:

invoke glVertex3d,float 0.6,float -0.6,float 0.0

invoke glVertex2f,float dword 0.1,float dword 0.2

The stack space for parameters are allocated before each call and freed immediately
after it. However it is possible to allocate this space just once for all the calls inside
some given block of code, for this purpose there are frame and endf macros provided.
They should be used to enclose a block, inside which the RSP register is not altered
between the procedure calls and they prevent each call from allocating stack space for
parameters, as it is reserved just once by the frame macro and then freed at the end by
the endf macro.

frame ; allocate stack space just once

invoke TranslateMessage,msg

invoke DispatchMessage,msg

endf

The proc macro for 64–bit Windows has the same syntax and features as 32–bit one
(though stdcall and c options are of no use in its case). It should be noted however
that in the calling convention used in 64–bit Windows first four parameters are passed in
registers (RCX, RDX, R8 and R9), and therefore, even though there is a space reserved
for them at the stack and it is labelled with name provided in the procedure definition,
those four parameters will not initially reside there. They should be accessed by directly
reading the registers. But if those registers are needed to be used for some other purpose,
it is recommended to store the value of such parameter into the memory cell reserved
for it. The beginning of such procedure may look like:

proc WindowProc hwnd,wmsg,wparam,lparam

mov [hwnd],rcx

mov [wmsg],edx

mov [wparam],r8

mov [lparam],r9

; now registers can be used for other purpose

; and parameters can still be accessed later

3.1.5 Customizing procedures

It is possible to create a custom code for procedure framework when using proc macroin-
struction. There are three symbolic variables, prologue@proc, epilogue@proc and
close@proc, which define the names of macroinstructions that proc calls upon entry to
the procedure, return from procedure (created with ret macro) and at the end of proce-
dure (made with endp macro). Those variables can be re–defined to point to some other
macroinstructions, so that all the code generated with proc macro can be customized.

118 CHAPTER 3. WINDOWS PROGRAMMING

Each of those three macroinstructions takes five parameters. The first one provides
a label of procedure entry point, which is the name of procedure aswell. The second one
is a bitfield containing some flags, notably the bit 4 is set when the caller is supposed
to restore the stack, and cleared otherwise. The third one is a value that specifies
the number of bytes that parameters to the procedure take on the stack. The fourth
one is a value that specified the number of bytes that should be reserved for the local
variables. Finally, the fifth an last parameter is the list of comma–separated registers,
which procedure declared to be used and which should therefore be saved by prologue
and restored by epilogue.

The prologue macro apart from generating code that would set up the stack frame
and the pointer to local variables has to define two symbolic variables, parmbase@proc
and localbase@proc. The first one should provide the base address for where the
parameters reside, and the second one should provide the address for where the local
variables reside – usually relative to EBP/RBP register, but it is possible to use other
bases if it can be ensured that those pointers will be valid at any point inside the
procedure where parameters or local variables are accessed. It is also up to the prologue
macro to make any alignments necessary for valid procedure implementation; the size
of local variables provided as fourth parameter may itself be not aligned at all.

The default behavior of proc is defined by prologuedef and epiloguedef macros
(in default case there is no need for closing macro, so the close@proc has an empty
value). If it is needed to return to the defaults after some customizations were used, it
should be done with the following three lines:

prologue@proc equ prologuedef

epilogue@proc equ epiloguedef

close@proc equ

As an example of modified prologue, below is the macroinstruction that implements
stack-probing prologue for 32–bit Windows. Such method of allocation should be used
every time the area of local variables may get larger than 4096 bytes.

macro sp_prologue procname,flag,parmbytes,localbytes,reglist

{ local loc

loc = (localbytes+3) and (not 3)

parmbase@proc equ ebp+8

localbase@proc equ ebp-loc

if parmbytes | localbytes

push ebp

mov ebp,esp

if localbytes

repeat localbytes shr 12

mov byte [esp-%*4096],0

end repeat

3.1. BASIC HEADERS 119

sub esp,loc

end if

end if

irps reg, reglist \{ push reg \} }

prologue@proc equ sp_prologue

It can be easily modified to use any other stack probing method of the programmer’s
preference.

The 64–bit headers provide an additional set of prologue/epilogue macros, which
allow to define procedure that uses RSP to access parameters and local variables (so
RBP register is free to use for any other by procedure) and also allocates the common
space for all the procedure calls made inside, so that fastcall or invoke macros called
do not need to allocate any stack space themselves. It is an effect similar to the one
obtained by putting the code inside the procedure into frame block, but in this case the
allocation of stack space for procedure calls is merged with the allocation of space for
local variables. The code inside such procedure must not alter RSP register in any way.
To switch to this behavior of 64–bit proc, use the following instructions:

prologue@proc equ static_rsp_prologue

epilogue@proc equ static_rsp_epilogue

close@proc equ static_rsp_close

3.1.6 Exports

The export macroinstruction constructs the export data for the PE file (it should be
either placed in the section marked as export, or within the data export block. The first
argument should be quoted string defining the name of library file, and the rest should
be any number of pairs of arguments, first in each pair being the name of procedure
defined somewhere inside the source, and the second being the quoted string containing
the name under which this procedure should be exported by the library. This sample:

export ’MYLIB.DLL’,\

MyStart,’Start’,\

MyStop,’Stop’

defines the table exporting two functions, which are defined under the names MyStart

and MyStop in the sources, but will be exported by library under the shorter names. The
macroinstruction take care of the alphabetical sorting of the table, which is required by
PE format.

3.1.7 Component Object Model

The interface macro allows to declare the interface of the COM object type, the first
parameter is the name of interface, and then the consecutive names of the methods

120 CHAPTER 3. WINDOWS PROGRAMMING

should follow, like in this example:

interface ITaskBarList,\

QueryInterface,\

AddRef,\

Release,\

HrInit,\

AddTab,\

DeleteTab,\

ActivateTab,\

SetActiveAlt

The comcall macro may be then used to call the method of the given object. The
first parameter to this macro should be the handle to object, the second one should be
name of COM interface implemented by this object, and then the name of method and
parameters to this method. For example:

comcall ebx,ITaskBarList,ActivateTab,[hwnd]

uses the contents of EBX register as a handle to COM object with the ITaskBarList

interface, and calls the ActivateTab method of this object with the [hwnd] parameter.
You can also use the name of COM interface in the same way as the name of data

structure, to define the variable that will hold the handle to object of given type:

ShellTaskBar ITaskBarList

The above line defines the variable, in which the handle to COM object can be stored.
After storing there the handle to an object, its methods can be called with the cominvk.
This macro needs only the name of the variable with assigned interface and the name
of method as first two parameters, and then parameters for the method. So the
ActivateTab method of object whose handle is stored in the ShellTaskBar variable
as defined above can be called this way:

cominvk ShellTaskBar,ActivateTab,[hwnd]

which does the same as:

comcall [ShellTaskBar],ITaskBarList,ActivateTab,[hwnd]

3.1.8 Resources

There are two ways to create resources, one is to include the external resource file created
with some other program, and the other one is to create resource section manually.
The latter method, though doesn’t need any additional program to be involved, is
more laborious, but the standard headers provide the assistance – the set of elementary
macroinstructions that serve as bricks to compose the resource section.

3.1. BASIC HEADERS 121

The directory macroinstruction must be placed directly in the beginning of manu-
ally built resource data and it defines what types of resources it contains. It should be
followed by the pairs of values, the first one in each pair being the identifier of the type
of resource, and the second one the label of subdirectory of the resources of given type.
It may look like this:

directory RT_MENU,menus,\

RT_ICON,icons,\

RT_GROUP_ICON,group_icons

The subdirectories can be placed anywhere in the resource area after the main direc-
tory, and they have to be defined with the resource macroinstruction, which requires
first parameter to be the label of the subdirectory (corresponding to the entry in main
directory) followed by the trios of parameters – in each such entry the first parameter
defines the identifier of resource (this value is freely chosen by the programmer and
is then used to access the given resource from the program), the second specifies the
language and the third one is the label of resource. Standard equates should be used to
create language identifiers. For example the subdirectory of menus may be defined this
way:

resource menus,\

1,LANG_ENGLISH+SUBLANG_DEFAULT,main_menu,\

2,LANG_ENGLISH+SUBLANG_DEFAULT,other_menu

If the resource is of kind for which the language doesn’t matter, the language identi-
fier LANG_NEUTRAL should be used. To define the resources of various types there are
specialized macroinstructions, which should be placed inside the resource area.

The bitmaps are the resources with RT_BITMAP type identifier. To define the bitmap
resource use the bitmap macroinstruction with the first parameter being the label of
resource (corresponding to the entry in the subdirectory of bitmaps) and the second
being the quoted string containing the path to the bitmap file, like:

bitmap program_logo,’logo.bmp’

The are two resource types related to icons, the RT_GROUP_ICON is the type for
the resource, which has to be linked to one or more resources of RT_ICON type, each
one containing single image. This allows to declare images of different sizes and color
depths under the common resource identifier. This identifier, given to the resource of
RT_GROUP_ICON type may be then passed to the LoadIcon function, and it will choose
the image of suitable dimensions from the group. To define the icon, use the icon

macroinstruction, with first parameter being the label of RT_GROUP_ICON resource, fol-
lowed by the pairs of parameters declaring the images. First parameter in each pair
should be the label of RT_ICON resource, and the second one the quoted string contain-
ing the path to the icon file. In the simplest variant, when group of icon contains just
one image, it will look like:

122 CHAPTER 3. WINDOWS PROGRAMMING

icon main_icon,icon_data,’main.ico’

where the main_icon is the label for entry in resource subdirectory for RT_GROUP_ICON
type, and the icon_data is the label for entry of RT_ICON type.

The cursors are defined in a way similar to icons, with the RT_GROUP_CURSOR and
RT_CURSOR types and the cursor macro, which takes parameters analogous to those
taken by icon macro. So the definition of cursor may look like this:

cursor my_cursor,cursor_data,’my.cur’

The menus have the RT_MENU type of resource and are defined with the menu macroin-
struction followed by few others defining the items inside the menu. The menu itself takes
only one parameter – the label of resource. The menuitem defines the item in the menu,
it takes up to five parameters, but only two are required – the first one is the quoted
string containing the text for the item, and the second one is the identifier value (which
is the value that will be returned when user selects the given item from the menu). The
menuseparator defines a separator in the menu and doesn’t require any parameters.

The optional third parameter of menuitem specifies the menu resource flags. There
are two such flags available – MFR_END is the flag for the last item in the given menu,
and the MFR_POPUP marks that the given item is the submenu, and the following items
will be items composing that submenu until the item with MFR_END flag is found. The
MFR_END flag can be also given as the parameter to the menuseparator and is the only
parameter this macroinstruction can take. For the menu definition to be complete, every
submenu must be closed by the item with MFR_END flag, and the whole menu must also
be closed this way. Here is an example of complete definition of the menu:

menu main_menu

menuitem ’&File’,100,MFR_POPUP

menuitem ’&New’,101

menuseparator

menuitem ’E&xit’,109,MFR_END

menuitem ’&Help’,900,MFR_POPUP + MFR_END

menuitem ’&About...’,901,MFR_END

The optional fourth parameter of menuitem specifies the state flags for the given
item, these flags are the same as the ones used by API functions, like MFS_CHECKED or
MFS_DISABLED. Similarly, the fifth parameter can specify the type flags. For example
this will define item checked with a radio–button mark:

menuitem ’Selection’,102, ,MFS_CHECKED,MFT_RADIOCHECK

The dialog boxes have the RT_DIALOG type of resource and are defined with the
dialog macroinstruction followed by any number of items defined with dialogitem

ended with the enddialog.

3.1. BASIC HEADERS 123

The dialog can take up to eleven parameters, first seven being required. First
parameter, as usual, specifies the label of resource, second is the quoted string containing
the title of the dialog box, the next four parameters specify the horizontal and vertical
coordinates, the width and the height of the dialog box window respectively. The
seventh parameter specifies the style flags for the dialog box window, the optional eighth
one specifies the extended style flags. The ninth parameter can specify the menu for
window – it should be the identifier of menu resource, the same as one specified in the
subdirectory of resources with RT_MENU type. Finally the tenth and eleventh parameter
can be used to define the font for the dialog box – first of them should be the quoted
string containing the name of font, and the latter one the number defining the size of
font. When these optional parameters are not specified, the default MS Sans Serif of
size 8 is used.

This example shows the dialog macroinstruction with all the parameters except for
the menu (which is left with blank value), the optional ones are in the second line:

dialog about,’About’,50,50,200,100,WS_CAPTION+WS_SYSMENU,\

WS_EX_TOPMOST, ,’Times New Roman’,10

The dialogitem has eight required parameters and one optional. First parameter
should be the quoted string containing the class name for the item. Second parameter
can be either the quoted string containing text for the item, or resource identifier in
case when the contents of item has to be defined by some additional resource (like the
item of STATIC class with the SS_BITMAP style). The third parameter is the identifier for
the item, used to identify the item by the API functions. Next four parameters specify
the horizontal, vertical coordinates, the width and height of the item respectively. The
eighth parameter specifies the style for the item, and the optional ninth specifies the
extended style flags. An example dialog item definition:

dialogitem ’BUTTON’,’OK’,IDOK,8,8,45,15,WS_VISIBLE+WS_TABSTOP

And an example of static item containing bitmap, assuming that there exists a bitmap
resource of identifier 7:

dialogitem ’STATIC’,7,0,10,50,50,20,WS_VISIBLE+SS_BITMAP

The definition of dialog resource can contain any amount of items or none at all, and
it should be always ended with enddialog macroinstruction.

The resources of type RT_ACCELERATOR are created with accelerator macroinstruc-
tion. After first parameter traditionally being the label of resource, there should follow
the trios of parameters – the accelerator flags followed by the virtual key code or ASCII
character and the identifier value (which is like the identifier of the menu item). A
simple accelerator definition may look like this:

accelerator main_keys,\

FVIRTKEY+FNOINVERT,VK_F1,901,\

FVIRTKEY+FNOINVERT,VK_F10,109

124 CHAPTER 3. WINDOWS PROGRAMMING

The version information is the resource of type RT_VERSION and is created with the
versioninfo macroinstruction. After the label of the resource, the second parameter
specifies the operating system of PE file (usually it should be VOS__WINDOWS32), third
parameter the type of file (the most common are VFT_APP for program and VFT_DLL for
library), fourth the subtype (usually VFT2_UNKNOWN), fifth the language identifier, sixth
the code page and then the quoted string parameters, being the pairs of property name
and corresponding value. The simplest version information can be defined like:

versioninfo vinfo,VOS__WINDOWS32,VFT_APP,VFT2_UNKNOWN,\

LANG_ENGLISH+SUBLANG_DEFAULT,0,\

’FileDescription’,’Description of program’,\

’LegalCopyright’,’Copyright et cetera’,\

’FileVersion’,’1.0’,\

’ProductVersion’,’1.0’

Other kinds of resources may be defined with resdata macroinstruction, which takes
only one parameter – the label of resource, and can be followed by any instructions
defining the data, ended with endres macroinstruction, like:

resdata manifest

file ’manifest.xml’

endres

3.1.9 Text encoding

The resource macroinstructions use the du directive to define any Unicode strings inside
resources – since this directive simply zero extends the characters to the 16–bit values, for
the strings containing some non–ASCII characters, the du may need to be redefined. For
some of the encodings the macroinstructions redefining the du to generate the Unicode
texts properly are provided in the ENCODING subdirectory. For example if the source
text is encoded with Windows 1250 code page, such line should be put somewhere in
the beginning of the source:

include ’encoding\win1250.inc’

3.2 Extended headers

The files win32ax.inc, win32wx.inc, win64ax.inc and win64wx.inc provide all the
functionality of base headers and include a few more features involving more complex
macroinstructions. Also if no PE format is declared before including the extended
headers, the headers declare it automatically. The files win32axp.inc, win32wxp.inc,
win64axp.inc and win64wxp.inc are the variants of extended headers which addition-
ally perform checking the count of parameters to procedure calls.

3.2. EXTENDED HEADERS 125

3.2.1 Procedure parameters

With the extended headers the macroinstructions for calling procedures allow more
types of parameters than just the double word values as with basic headers. First of all,
when the quoted string is passes as a parameter to procedure, it is used to define string
data placed among the code, and passes to procedure the double word pointer to this
string. This allows to easily define the strings that don’t have to be re-used, just in the
line calling the procedure that requires pointers to those strings, like:

invoke MessageBox,HWND_DESKTOP,"Message","Caption",MB_OK

If the parameter is the group containing some values separated with commas, it is treated
in the same way as simple quoted string parameter.

If the parameter is preceded by the addr word, it means that this value is an address
and this address should be passed to procedure, even if it cannot be done directly – like
in the case of local variables, which have addresses relative to EBP/RBP register. In
32–bit case the EDX register is used temporarily to calculate the value of address and
pass it to the procedure. For example:

invoke RegisterClass,addr wc

in case when the wc is the local variable with address ebp-100h, will generate this
sequence of instructions:

lea edx,[ebp-100h]

push edx

call [RegisterClass]

However when the given address is not relative to any register, it is stored directly.
In 64–bit case the addr prefix is allowed even when only standard headers are used,

as it can be useful even in case of the regular addresses, because it enforces RIP-relative
address calculation.

With 32–bit headers, if the parameter is preceded by the word double, it is treated
as 64–bit value and passed to the procedure as two 32–bit parameters. For example:

invoke glColor3d,double 1.0,double 0.1,double 0.1

will pass the three 64–bit parameters as six double words to procedure. If the parameter
following double is the memory operand, it should not have size operator, the double

already works as the size override.
Finally, the calls to procedures can be nested, that is call to one procedure may be

used as the parameter to another. In such case the value returned in EAX/RAX by the
nested procedure is passed as the parameter to the procedure which it is nested in. A
sample of such nesting:

invoke MessageBox,<invoke GetTopWindow,[hwnd]>,\

"Message","Caption",MB_OK

There are no limits for the depth of nesting the procedure calls.

126 CHAPTER 3. WINDOWS PROGRAMMING

3.2.2 Structuring the source

The extended headers enable some macroinstructions that help with easy structuring the
program. The .data and .code are just the shortcuts to the declarations of sections for
data and for the code. The .end macroinstruction should be put at the end of program,
with one parameter specifying the entry point of program, and it also automatically
generates the import section using all the standard import tables. In 64–bit Windows
the .end automatically aligns the stack on 16 bytes boundary.

The .if macroinstruction generates a piece of code that checks for some simple
condition at the execution time, and depending on the result continues execution of
following block or skips it. The block should be ended with .endif, but earlier also
.elseif macroinstruction might be used to begin the code that will be executed under
some additional condition, when the previous were not met, and the .else as the last
before .endif to begin the block that will be executed when all the conditions were
false.

The condition can be specified by using comparison operator – one of the =, <, >, <=,
>=, and <> – between the two values, first of which must be either register or memory
operand. The values are compared as unsigned ones, unless the comparison expression
is preceded by the word signed. If you provide only single value as a condition, it will
be tested to be zero, and the condition will be true only if it’s not. For example:

.if eax

ret

.endif

generates the instructions, which skip over the ret when the EAX is zero.
There are also some special symbols recognized as conditions: the ZERO? is true

when the ZF flag is set, in the same way the CARRY?, SIGN?, OVERFLOW? and PARITY?

correspond to the state of CF, SF, OF and PF flags.
The simple conditions like above can be composed into complex conditional ex-

pressions using the &, | operators for conjunction and alternative, the ~ operator for
negation, and parenthesis. For example:

.if eax<=100 & (ecx | edx)

inc ebx

.endif

will generate the compare and jump instructions that will cause the given block to get
executed only when EAX is below or equal 100 and at the same time at least one of the
ECX and EDX is not zero.

The .while macroinstruction generates the instructions that will repeat executing
the given block (ended with .endw macroinstruction) as long as the condition is true.
The condition should follow the .while and can be specified in the same way as for
the .if. The pair of .repeat and .until macroinstructions define the block that will

3.2. EXTENDED HEADERS 127

be repeatedly executed until the given condition will be met – this time the condition
should follow the .until macroinstruction, placed at the end of block, like:

.repeat

add ecx,2

.until ecx>100

	Introduction
	Compiler overview
	System requirements
	Compiler usage
	Keyboard commands in editor
	Editor options
	Executing compiler from command line
	Command line compiler messages
	Output formats

	Assembly syntax
	Instruction syntax
	Data definitions
	Constants and labels
	Numerical expressions
	Jumps and calls
	Size settings

	Instruction set
	The x86 architecture instructions
	Data movement instructions
	Type conversion instructions
	Binary arithmetic instructions
	Decimal arithmetic instructions
	Logical instructions
	Control transfer instructions
	I/O instructions
	Strings operations
	Flag control instructions
	Conditional operations
	Miscellaneous instructions
	System instructions
	FPU instructions
	MMX instructions
	SSE instructions
	SSE2 instructions
	SSE3 instructions
	AMD 3DNow! instructions
	The x86-64 long mode instructions
	SSE4 instructions
	AVX instructions
	AVX2 instructions
	Auxiliary sets of computational instructions
	AVX–512 instructions
	Other extensions of instruction set

	Control directives
	Numerical constants
	Conditional assembly
	Repeating blocks of instructions
	Addressing spaces
	Other directives
	Multiple passes

	Preprocessor directives
	Including source files
	Symbolic constants
	Macroinstructions
	Structures
	Repeating macroinstructions
	Conditional preprocessing
	Order of processing

	Formatter directives
	MZ executable
	Portable Executable
	Common Object File Format
	Executable and Linkable Format

	Windows programming
	Basic headers
	Structures
	Imports
	Procedures (32–bit)
	Procedures (64–bit)
	Customizing procedures
	Exports
	Component Object Model
	Resources
	Text encoding

	Extended headers
	Procedure parameters
	Structuring the source

