CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when oper-
ating in protected mode on an Intel 64 or IA-32 processor. Most of the information
provided here also applies to interrupt and exception mechanisms used in real-
address, virtual-8086 mode, and 64-bit mode.

Chapter 15, "8086 Emulation,” describes information specific to interrupt and excep-
tion mechanisms in real-address and virtual-8086 mode. Section 5.14, “"Exception
and Interrupt Handling in 64-bit Mode,” describes information specific to interrupt
and exception mechanisms in IA-32e mode and 64-bit sub-mode.

5.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere
in the system, the processor, or within the currently executing program or task that
requires the attention of a processor. They typically result in a forced transfer of
execution from the currently running program or task to a special software routine or
task called an interrupt handler or an exception handler. The action taken by a
processor in response to an interrupt or exception is referred to as servicing or
handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to
signals from hardware. System hardware uses interrupts to handle events external
to the processor, such as requests to service peripheral devices. Software can also
generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an
instruction, such as division by zero. The processor detects a variety of error condi-
tions including protection violations, page faults, and internal machine faults. The
machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium
processors also permits a machine-check exception to be generated when internal
hardware errors and bus errors are detected.

When an interrupt is received or an exception is detected, the currently running
procedure or task is suspended while the processor executes an interrupt or excep-
tion handler. When execution of the handler is complete, the processor resumes
execution of the interrupted procedure or task. The resumption of the interrupted
procedure or task happens without loss of program continuity, unless recovery from
an exception was not possible or an interrupt caused the currently running program
to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism,
when operating in protected mode. A description of the exceptions and the conditions
that cause them to be generated is given at the end of this chapter.

Vol.3 5-1

INTERRUPT AND EXCEPTION HANDLING

5.2 EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each architecturally defined exception
and each interrupt condition requiring special handling by the processor is assigned
a unique identification number, called a vector. The processor uses the vector
assigned to an exception or interrupt as an index into the interrupt descriptor table
(IDT). The table provides the entry point to an exception or interrupt handler (see
Section 5.10, “Interrupt Descriptor Table (IDT)").

The allowable range for vector numbers is 0 to 255. Vectors in the range 0 through
31 are reserved by the Intel 64 and IA-32 architectures for architecture-defined
exceptions and interrupts. Not all of the vectors in this range have a currently defined
function. The unassigned vectors in this range are reserved. Do not use the reserved
vectors.

Vectors in the range 32 to 255 are designated as user-defined interrupts and are not
reserved by the Intel 64 and IA-32 architecture. These interrupts are generally
assignhed to external I/O devices to enable those devices to send interrupts to the
processor through one of the external hardware interrupt mechanisms (see Section
5.3, “Sources of Interrupts”).

Table 5-1 shows vector assignments for architecturally defined exceptions and for the
NMI interrupt. This table gives the exception type (see Section 5.5, “"Exception Clas-
sifications”) and indicates whether an error code is saved on the stack for the excep-
tion. The source of each predefined exception and the NMI interrupt is also given.

5.3 SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
®* External (hardware generated) interrupts.
®* Software-generated interrupts.

5.3.1 External Interrupts

External interrupts are received through pins on the processor or through the local
APIC. The primary interrupt pins on Pentium 4, Intel Xeon, P6 family, and Pentium
processors are the LINT[1:0] pins, which are connected to the local APIC (see
Chapter 9, "Advanced Programmable Interrupt Controller (APIC)”). When the local
APIC is enabled, the LINT[1:0] pins can be programmed through the APIC’s local
vector table (LVT) to be associated with any of the processor’s exception or interrupt
vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR
and NMI pins, respectively. Asserting the INTR pin signals the processor that an
external interrupt has occurred. The processor reads from the system bus the inter-
rupt vector number provided by an external interrupt controller, such as an 8259A

5-2 Vol.3

INTERRUPT AND EXCEPTION HANDLING

(see Section 5.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a
non-maskable interrupt (NMI), which is assigned to interrupt vector 2.

Table 5-1. Protected-Mode Exceptions and Interrupts

Vector | Mne- | Description Type Error | Source
No. monic Code
0 #DE | Divide Error Fault No DIV and IDIV instructions.
1 #DB | RESERVED Fault/ No For Intel use only.
Trap
2 — NMI Interrupt Interrupt | No Nonmaskable external
interrupt.
3 #BP | Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR | BOUND Range Exceeded | Fault No BOUND instruction.
6 #UD | Invalid Opcode (Undefined | Fault No UDZ2 instruction or reserved
Opcode) opcode.1
7 #NM | Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can
(zero) | generate an exception, an NMI,
or an INTR.
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 H#TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP | Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes Stack operations and SS
register loads.
13 #GP | General Protection Fault Yes Any memory reference and
other protection checks.
14 H#PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not No
use.)
16 #MF | x87 FPU Floating-Point Fault No x87 FPU floating-point or
Error (Math Fault) WAIT/FWAIT instruction.
17 #AC | Alignment Check Fault Yes Any data reference in
(Zero) memory.3

Vol.3 5-3

INTERRUPT AND EXCEPTION HANDLING

Table 5-1. Protected-Mode Exceptions and Interrupts (Contd.)

18 #MC | Machine Check Abort No Error codes (if any) and source
are model dependent.*

19 #XM | SIMD Floating-Point Fault No SSE/SSEZ2/SSE3 floating-point
Exception instructions?

20-31 | — Intel reserved. Do not use.

32- — User Defined (Non- Interrupt External interrupt or INT n

255 reserved) Interrupts instruction.

NOTES:

1. The UD2 instruction was introduced in the Pentium Pro processor.
2. Processors after the Intel386 processor do not generate this exception.
3. This exception was introduced in the Intel486 processor.

4, This exception was introduced in the Pentium processor and enhanced in the P6 family proces-
Sors.

5. This exception was introduced in the Pentium Ill processor.

The processor’s local APIC is normally connected to a system-based I/O APIC. Here,
external interrupts received at the I/O APIC’s pins can be directed to the local APIC
through the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors).
The I/O APIC determines the vector number of the interrupt and sends this humber
to the local APIC. When a system contains multiple processors, processors can also
send interrupts to one another by means of the system bus (Pentium 4, Intel Core
Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium
processors that do not contain an on-chip local APIC. These processors have dedi-
cated NMI and INTR pins. With these processors, external interrupts are typically
generated by a system-based interrupt controller (8259A), with the interrupts being
signaled through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to
occur. However, these interrupts are not handled by the interrupt and exception
mechanism described in this chapter. These pins include the RESET#, FLUSH#,
STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular
processor is implementation dependent. Pin functions are described in the data
books for the individual processors. The SMI# pin is described in Chapter 25,
“System Management.”

5.3.2 Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or
through the local APIC is called a maskable hardware interrupt. Maskable hardware
interrupts that can be delivered through the INTR pin include all IA-32 architecture

5-4 Vol.3

INTERRUPT AND EXCEPTION HANDLING

defined interrupt vectors from 0 through 255; those that can be delivered through
the local APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be
masked as a group (see Section 5.8.1, "Masking Maskable Hardware Interrupts”).
Note that when interrupts 0 through 15 are delivered through the local APIC, the
APIC indicates the receipt of an illegal vector.

5.3.3 Software-Generated Interrupts

The INT n instruction permits interrupts to be generated from within software by
supplying an interrupt vector number as an operand. For example, the INT 35
instruction forces an implicit call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruc-
tion. If the processor’s predefined NMI vector is used, however, the response of the
processor will not be the same as it would be from an NMI interrupt generated in the
normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not
activated.

Interrupts generated in software with the INT n instruction cannot be masked by the
IF flag in the EFLAGS register.

54 SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
® Processor-detected program-error exceptions.

®* Software-generated exceptions.

®* Machine-check exceptions.

5.4.1 Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors
during the execution in an application program or the operating system or executive.
Intel 64 and IA-32 architectures define a vector number for each processor-detect-
able exception. Exceptions are classified as faults, traps, and aborts (see Section
5.5, “"Exception Classifications”).

Vol.3 5-5

INTERRUPT AND EXCEPTION HANDLING

5.4.2 Software-Generated Exceptions

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in soft-
ware. These instructions allow checks for exception conditions to be performed at
points in the instruction stream. For example, INT 3 causes a breakpoint exception to
be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a
limitation. If INT n provides a vector for one of the architecturally-defined excep-
tions, the processor generates an interrupt to the correct vector (to access the
exception handler) but does not push an error code on the stack. This is true even if
the associated hardware-generated exception normally produces an error code. The
exception handler will still attempt to pop an error code from the stack while handling
the exception. Because no error code was pushed, the handler will pop off and
discard the EIP instead (in place of the missing error code). This sends the return to
the wrong location.

543 Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-

check mechanisms for checking the operation of the internal chip hardware and bus
transactions. These mechanisms are implementation dependent. When a machine-

check error is detected, the processor signals a machine-check exception (vector 18)
and returns an error code.

See Chapter 5, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 14,
“Machine-Check Architecture,” for more information about the machine-check
mechanism.

5.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are
reported and whether the instruction that caused the exception can be restarted
without loss of program or task continuity.

®* Faults — A fault is an exception that can generally be corrected and that, once
corrected, allows the program to be restarted with no loss of continuity. When a
fault is reported, the processor restores the machine state to the state prior to
the beginning of execution of the faulting instruction. The return address (saved
contents of the CS and EIP registers) for the fault handler points to the faulting
instruction, rather than to the instruction following the faulting instruction.

®* Traps — A trap is an exception that is reported immediately following the
execution of the trapping instruction. Traps allow execution of a program or task
to be continued without loss of program continuity. The return address for the
trap handler points to the instruction to be executed after the trapping
instruction.

5-6 Vol.3

INTERRUPT AND EXCEPTION HANDLING

® Aborts — An abort is an exception that does not always report the precise
location of the instruction causing the exception and does not allow a restart of
the program or task that caused the exception. Aborts are used to report severe
errors, such as hardware errors and inconsistent or illegal values in system
tables.

NOTE

One exception subset normally reported as a fault is not restartable.
Such exceptions result in loss of some processor state. For example,
executing a POPAD instruction where the stack frame crosses over
the end of the stack segment causes a fault to be reported. In this
situation, the exception handler sees that the instruction pointer
(CS:EIP) has been restored as if the POPAD instruction had not been
executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered
programming errors. An application causing this class of exceptions
should be terminated by the operating system.

5.6 PROGRAM OR TASK RESTART

To allow the restarting of program or task following the handling of an exception or
an interrupt, all exceptions (except aborts) are guaranteed to report exceptions on
an instruction boundary. All interrupts are guaranteed to be taken on an instruction
boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor
generates an exception) points to the faulting instruction. So, when a program or task
is restarted following the handling of a fault, the faulting instruction is restarted (re-
executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example
of this type of fault is a page-fault exception (#PF) that occurs when a program or
task references an operand located on a page that is not in memory. When a page-
fault exception occurs, the exception handler can load the page into memory and
resume execution of the program or task by restarting the faulting instruction. To
insure that the restart is handled transparently to the currently executing program or
task, the processor saves the necessary registers and stack pointers to allow a restart
to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction
following the trapping instruction. If a trap is detected during an instruction which
transfers execution, the return instruction pointer reflects the transfer. For example,
if a trap is detected while executing a JMP instruction, the return instruction pointer
points to the destination of the JMP instruction, not to the next address past the JMP
instruction. All trap exceptions allow program or task restart with no loss of conti-
nuity. For example, the overflow exception is a trap exception. Here, the return
instruction pointer points to the instruction following the INTO instruction that tested

Vol.3 5-7

INTERRUPT AND EXCEPTION HANDLING

EFLAGS.OF (overflow) flag. The trap handler for this exception resolves the overflow
condition. Upon return from the trap handler, program or task execution continues at
the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task.
Abort handlers are designed to collect diagnostic information about the state of the
processor when the abort exception occurred and then shut down the application and
system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without
loss of continuity. The return instruction pointer saved for an interrupt points to the
next instruction to be executed at the instruction boundary where the processor took
the interrupt. If the instruction just executed has a repeat prefix, the interrupt is
taken at the end of the current iteration with the registers set to execute the next
iteration.

The ability of a P6 family processor to speculatively execute instructions does not
affect the taking of interrupts by the processor. Interrupts are taken at instruction
boundaries located during the retirement phase of instruction execution; so they are
always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-
32 Architectures,” in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, for more information about the P6 family processors’ microarchi-
tecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying
amounts of prefetching and preliminary decoding. With these processors as well,
exceptions and interrupts are not signaled until actual “in-order” execution of the
instructions. For a given code sample, the signaling of exceptions occurs uniformly
when the code is executed on any family of IA-32 processors (except where new
exceptions or new opcodes have been defined).

5.7 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
®* External hardware asserts the NMI pin.

® The processor receives a message on the system bus (Pentium 4, Intel Core Duo,
Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6
family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor
handles it immediately by calling the NMI handler pointed to by interrupt vector
number 2. The processor also invokes certain hardware conditions to insure that no
other interrupts, including NMI interrupts, are received until the NMI handler has
completed executing (see Section 5.7.1, "Handling Multiple NMIs"”).

Also, when an NMI is received from either of the above sources, it cannot be masked
by the IF flag in the EFLAGS register.

5-8 Vol.3

INTERRUPT AND EXCEPTION HANDLING

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector
2 to invoke the NMI interrupt handler; however, this interrupt will not truly be an NMI
interrupt. A true NMI interrupt that activates the processor’s NMI-handling hardware
can only be delivered through one of the mechanisms listed above.

5.7.1 Handling Multiple NMis

While an NMI interrupt handler is executing, the processor disables additional calls to
the NMI handler until the next IRET instruction is executed. This blocking of subse-
guent NMIs prevents stacking up calls to the NMI handler. It is recommended that the
NMI interrupt handler be accessed through an interrupt gate to disable maskable
hardware interrupts (see Section 5.8.1, "Masking Maskable Hardware Interrupts”). If
the NMI handler is a virtual-8086 task with an IOPL of less than 3, an IRET instruction
issued from the handler generates a general-protection exception (see Section
15.2.7, “Sensitive Instructions”). In this case, the NMI is unmasked before the
general-protection exception handler is invoked.

5.8 ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of
the processor and of the IF and RF flags in the EFLAGS register, as described in the
following sections.

5.8.1 Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (see Section 5.3.2, "Maskable Hard-
ware Interrupts”). When the IF flag is clear, the processor inhibits interrupts deliv-
ered to the INTR pin or through the local APIC from generating an internal interrupt
request; when the IF flag is set, interrupts delivered to the INTR or through the local
APIC pin are processed as normal external interrupts.

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin
or delivery mode NMI messages delivered through the local APIC, nor does it affect
processor generated exceptions. As with the other flags in the EFLAGS register, the
processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved inter-
rupt and exception vectors 0 through 32 can potentially cause confusion. Architectur-
ally, when the IF flag is set, an interrupt for any of the vectors from 0 through 32 can
be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate
an interrupt and call the interrupt or exception handler pointed to by the vector
number. So for example, it is possible to invoke the page-fault handler through the
INTR pin (by means of vector 14); however, this is not a true page-fault exception. It

Vol.3 5-9

INTERRUPT AND EXCEPTION HANDLING

is an interrupt. As with the INT n instruction (see Section 5.4.2, “Software-Generated
Exceptions”), when an interrupt is generated through the INTR pin to an exception
vector, the processor does not push an error code on the stack, so the exception
handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI
(clear interrupt-enable flag) instructions, respectively. These instructions may be
executed only if the CPL is equal to or less than the IOPL. A general-protection excep-
tion (#GP) is generated if they are executed when the CPL is greater than the IOPL.
(The effect of the IOPL on these instructions is modified slightly when the virtual
mode extension is enabled by setting the VME flag in control register CR4: see
Section 15.3, “Interrupt and Exception Handling in Virtual-8086 Mode.” Behavior is
also impacted by the PVI flag: see Section 15.4, “Protected-Mode Virtual Interrupts.”

The IF flag is also affected by the following operations:

® The PUSHF instruction stores all flags on the stack, where they can be examined
and modified. The POPF instruction can be used to load the modified flags back
into the EFLAGS register.

®* Task switches and the POPF and IRET instructions load the EFLAGS register;
therefore, they can be used to modify the setting of the IF flag.

® When an interrupt is handled through an interrupt gate, the IF flag is automati-
cally cleared, which disables maskable hardware interrupts. (If an interrupt is
handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter
3, “Instruction Set Reference, A-M,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2A, for a detailed description of the operations
these instructions are allowed to perform on the IF flag.

5.8.2 Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor
to instruction-breakpoint conditions (see the description of the RF flag in Section 2.3,
“System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception
(#DB); when clear, instruction breakpoints will generate debug exceptions. The
primary function of the RF flag is to prevent the processor from going into a debug
exception loop on an instruction-breakpoint. See Section 18.3.1.1, “Instruction-
Breakpoint Exception Condition,” for more information on the use of this flag.

5-10 Vol.3

INTERRUPT AND EXCEPTION HANDLING

5.8.3 Masking Exceptions and Interrupts When Switching Stacks

To switch to a different stack segment, software often uses a pair of instructions, for
example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into
the SS register but before the ESP register has been loaded, these two parts of the
logical address into the stack space are inconsistent for the duration of the interrupt
or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and
single-step trap exceptions after either a MOV to SS instruction or a POP to SS
instruction, until the instruction boundary following the next instruction is reached.
All other faults may still be generated. If the LSS instruction is used to modify the
contents of the SS register (which is the recommended method of modifying this
register), this problem does not occur.

5.9 PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the
processor services them in a predictable order. Table 5-2 shows the priority among
classes of exception and interrupt sources.

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
-Tflagin TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

- INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

Vol.3 5-11

INTERRUPT AND EXCEPTION HANDLING

Table 5-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)

Nonmaskable Interrupts (NMI) £

Maskable Hardware Interrupts 1

Code Breakpoint Fault

(N | O | U

Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- Invalid Opcode

- Coprocessor Not Available

10 (Lowest) | Faults on Executing an Instruction
- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception
- SIMD floating-point exception

NOTE:

1. The Intel486™ processor and earlier processors group nonmaskable and maskable interrupts in
the same priority class.

While priority among these classes listed in Table 5-2 is consistent throughout the
architecture, exceptions within each class are implementation-dependent and may
vary from processor to processor. The processor first services a pending exception or
interrupt from the class which has the highest priority, transferring execution to the
first instruction of the handler. Lower priority exceptions are discarded; lower priority
interrupts are held pending. Discarded exceptions are re-generated when the inter-
rupt handler returns execution to the point in the program or task where the excep-
tions and/or interrupts occurred.

5.10 INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector
with a gate descriptor for the procedure or task used to service the associated excep-
tion or interrupt. Like the GDT and LDTs, the IDT is an array of 8-byte descriptors (in

5-12 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor.
To form an index into the IDT, the processor scales the exception or interrupt vector
by eight (the number of bytes in a gate descriptor). Because there are only 256 inter-
rupt or exception vectors, the IDT need not contain more than 256 descriptors. It can
contain fewer than 256 descriptors, because descriptors are required only for the
interrupt and exception vectors that may occur. All empty descriptor slots in the IDT
should have the present flag for the descriptor set to 0.

The base addresses of the IDT should be alighed on an 8-byte boundary to maximize
performance of cache line fills. The limit value is expressed in bytes and is added to
the base address to get the address of the last valid byte. A limit value of 0 results in
exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N - 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 5-1,
the processor locates the IDT using the IDTR register. This register holds both a
32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store
the contents of the IDTR register, respectively. The LIDT instruction loads the IDTR

register with the base address and limit held in a memory operand. This instruction
can be executed only when the CPL is 0. It normally is used by the initialization code
of an operating system when creating an IDT. An operating system also may use it to
change from one IDT to another. The SIDT instruction copies the base and limit value
stored in IDTR to memory. This instruction can be executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection
exception (#GP) is generated.

NOTE

Because interrupts are delivered to the processor core only once, an
incorrectly configured IDT could result in incomplete interrupt
handling and/or the blocking of interrupt delivery.

IA-32 architecture rules need to be followed for setting up IDTR
base/limit/access fields and each field in the gate descriptors. The
same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT
and accessing the stack.

Vol.3 5-13

INTERRUPT AND EXCEPTION HANDLING

IDTR Register
47 16 15 0

IDT Base Address | DT Limit

i Interrupt

C Descriptor Table (IDT)
Gate for

Interrupt #n (n-1)=8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

B Interrupt #1 0
31 0

Figure 5-1. Relationship of the IDTR and IDT

5.11 IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
®* Task-gate descriptor

®* Interrupt-gate descriptor

®* Trap-gate descriptor

Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate
descriptors. The format of a task gate used in an IDT is the same as that of a task
gate used in the GDT or an LDT (see Section 6.2.5, “Task-Gate Descriptor”). The task
gate contains the segment selector for a TSS for an exception and/or interrupt
handler task.

Interrupt and trap gates are very similar to call gates (see Section 4.8.3, “Call
Gates”). They contain a far pointer (segment selector and offset) that the processor
uses to transfer program execution to a handler procedure in an exception- or inter-
rupt-handler code segment. These gates differ in the way the processor handles the
IF flag in the EFLAGS register (see Section 5.12.1.2, “Flag Usage By Exception- or
Interrupt-Handler Procedure”).

5-14 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Task Gate
31 1615141312 8 7 0
D
Pl P (0010 1 4
L
31 16 15 0
TSS Segment Selector 0

Interrupt Gate

31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |OD110|0 00 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |OD111/000 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D
|:| Reserved

Figure 5-2. IDT Gate Descriptors

5.12 EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it
handles calls with a CALL instruction to a procedure or a task. When responding to an
exception or interrupt, the processor uses the exception or interrupt vector as an
index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL
to a call gate (see Section 4.8.2, “"Gate Descriptors,” through Section 4.8.6,

Vol.3 5-15

INTERRUPT AND EXCEPTION HANDLING

“Returning from a Called Procedure”). If index points to a task gate, the processor
executes a task switch to the exception- or interrupt-handler task in a manner similar
to a CALL to a task gate (see Section 6.3, “Task Switching”).

5.12.1 Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler proce-
dure that runs in the context of the currently executing task (see Figure 5-3). The
segment selector for the gate points to a segment descriptor for an executable code
segment in either the GDT or the current LDT. The offset field of the gate descriptor
points to the beginning of the exception- or interrupt-handling procedure.

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt 5 Interrupt or —>@_>

Vector Trap Gate

—>
Segment Selector
GDT or LDT
Base
Address
N Segment
Descriptor

Figure 5-3. Interrupt Procedure Call

5-16 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

When the processor performs a call to the exception- or interrupt-handler procedure:

If the handler procedure is going to be executed at a numerically lower privilege
level, a stack switch occurs. When the stack switch occurs:

a.

The segment selector and stack pointer for the stack to be used by the
handler are obtained from the TSS for the currently executing task. On this
new stack, the processor pushes the stack segment selector and stack
pointer of the interrupted procedure.

The processor then saves the current state of the EFLAGS, CS, and EIP
registers on the new stack (see Figures 5-4).

If an exception causes an error code to be saved, it is pushed on the new
stack after the EIP value.

If the handler procedure is going to be executed at the same privilege level as the
interrupted procedure:

a.

The processor saves the current state of the EFLAGS, CS, and EIP registers
on the current stack (see Figures 5-4).

If an exception causes an error code to be saved, it is pushed on the current
stack after the EIP value.

Vol.3 5-17

INTERRUPT AND EXCEPTION HANDLING

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

~<—— ESP Before

EFLAGS Transfer to Handler
Cs
EIP

Error Code |«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler’s Stack

Stack
~<«—— ESP Before
Transfer to Handler)
ESP
EFLAGS
CS
EIP

ESP After——> Error Code
Transfer to Handler

Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use
the IRET (or IRETD) instruction. The IRET instruction is similar to the RET instruction
except that it restores the saved flags into the EFLAGS register. The IOPL field of the
EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-M,” of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A, for
a description of the complete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction
switches back to the interrupted procedure’s stack on the return.

5.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is
similar to that used for ordinary procedure calls when called through a call gate (see
Section 4.8.4, “Accessing a Code Segment Through a Call Gate”). The processor does

5-18 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The
protection mechanism for exception- and interrupt-handler procedures is different in
the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on
implicit calls to exception and interrupt handlers.

® The processor checks the DPL of the interrupt or trap gate only if an exception or
interrupt is generated with an INT n, INT 3, or INTO instruction. Here, the CPL
must be less than or equal to the DPL of the gate. This restriction prevents
application programs or procedures running at privilege level 3 from using a
software interrupt to access critical exception handlers, such as the page-fault
handler, providing that those handlers are placed in more privileged code
segments (numerically lower privilege level). For hardware-generated interrupts
and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these
privilege rules effectively impose restrictions on the privilege levels at which excep-
tion and interrupt- handling procedures can run. Either of the following techniques
can be used to avoid privilege-level violations.

®* The exception or interrupt handler can be placed in a conforming code segment.
This technique can be used for handlers that only need to access data available
on the stack (for example, divide error exceptions). If the handler needs data
from a data segment, the data segment needs to be accessible from privilege
level 3, which would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level
0. This handler would always run, regardless of the CPL that the interrupted
program or task is running at.

5.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or
a trap gate, the processor clears the TF flag in the EFLAGS register after it saves the
contents of the EFLAGS register on the stack. (On calls to exception and interrupt
handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register,
after they are saved on the stack.) Clearing the TF flag prevents instruction tracing
from affecting interrupt response. A subsequent IRET instruction restores the TF
(and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register
on the stack.

The only difference between an interrupt gate and a trap gate is the way the

processor handles the IF flag in the EFLAGS register. When accessing an exception-
or interrupt-handling procedure through an interrupt gate, the processor clears the
IF flag to prevent other interrupts from interfering with the current interrupt handler.
A subsequent IRET instruction restores the IF flag to its value in the saved contents

Vol.3 5-19

INTERRUPT AND EXCEPTION HANDLING

of the EFLAGS register on the stack. Accessing a handler procedure through a trap
gate does not affect the IF flag.

5.12.2 Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a
task switch results. Handling an exception or interrupt with a separate task offers
several advantages:

®* The entire context of the interrupted program or task is saved automatically.

® A new TSS permits the handler to use a new privilege level 0 stack when handling
the exception or interrupt. If an exception or interrupt occurs when the current
privilege level 0 stack is corrupted, accessing the handler through a task gate can
prevent a system crash by providing the handler with a new privilege level O
stack.

®* The handler can be further isolated from other tasks by giving it a separate
address space. This is done by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of
machine state that must be saved on a task switch makes it slower than using an
interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 5-5). A
switch to the handler task is handled in the same manner as an ordinary task switch
(see Section 6.3, “Task Switching”). The link back to the interrupted task is stored in
the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there
are actually two mechanisms that can be used to dispatch tasks: the software sched-
uler (part of the operating system) and the hardware scheduler (part of the
processor's interrupt mechanism). The software scheduler needs to accommodate
interrupt tasks that may be dispatched when interrupts are enabled.

NOTE

Because IA-32 architecture tasks are not re-entrant, an interrupt-
handler task must disable interrupts between the time it completes
handling the interrupt and the time it executes the IRET instruction.
This action prevents another interrupt from occurring while the
interrupt task’s TSS is still marked busy, which would cause a
general-protection (#GP) exception.

5-20 Vol.3

INTERRUPT AND EXCEPTION HANDLING

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector — Task Gate
TSS Selector TSS
Base
GDT Address

> TSS Descriptor

Figure 5-5. Interrupt Task Switch

5.13 ERROR CODE

When an exception condition is related to a specific segment, the processor pushes
an error code onto the stack of the exception handler (whether it is a procedure or
task). The error code has the format shown in Figure 5-6. The error code resembles
a segment selector; however, instead of a TI flag and RPL field, the error code

contains 3 flags:

EXT External event (bit 0) — When set, indicates that an event external
to the program, such as a hardware interrupt, caused the exception.
IDT Descriptor location (bit 1) — When set, indicates that the index

portion of the error code refers to a gate descriptor in the IDT; when

Vol. 3 5-21

INTERRUPT AND EXCEPTION HANDLING

clear, indicates that the index refers to a descriptor in the GDT or the
current LDT.

TI GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set,
the TI flag indicates that the index portion of the error code refers to
a segment or gate descriptor in the LDT; when clear, it indicates that
the index refers to a descriptor in the current GDT.

31 3

Reserved Segment Selector Index

—-o— |~
—AXm| o

Figure 5-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT
to the segment or gate selector being referenced by the error code. In some cases
the error code is null (that is, all bits in the lower word are clear). A null error code
indicates that the error was not caused by a reference to a specific segment or that a
null segment descriptor was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the
“Interrupt 14—Page-Fault Exception (#PF)” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the
default interrupt, trap, or task gate size). To keep the stack aligned for doubleword
pushes, the upper half of the error code is reserved. Note that the error code is not
popped when the IRET instruction is executed to return from an exception handler, so
the handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally
(with the INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is
normally produced for those exceptions.

5.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT
MODE

In 64-bit mode, interrupt and exception handling is similar to what has been
described for non-64-bit modes. The following are the exceptions:

®* Allinterrupt handlers pointed by the IDT are in 64-bit code (this does not apply to
the SMI handler).

® The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses
8-byte, zero extended stores.

5-22 Vol.3

INTERRUPT AND EXCEPTION HANDLING

® The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy
modes, this push is conditional and based on a change in current privilege level
(CPL).

® The new SS is set to NULL if there is a change in CPL.
®* IRET behavior changes.

® There is a new interrupt stack-switch mechanism.

®* The alignment of interrupt stack frame is different.

5.14.1 64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the
instruction pointer (RIP). The 64-bit RIP referenced by interrupt-gate descriptors
allows an interrupt service routine to be located anywhere in the linear-address
space. See Figure 5-7.

Interrupt/Trap Gate

31 0
Reserved 12
31 0
Offset 63..32 8
31 16 15 14 13 12 11 8 7 54 2 0
Offset 31..16 =] g 0| TYPE 0 0 O|o|o]| IST |4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 5-7. 64-Bit IDT Gate Descriptors

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The
first eight bytes (bytes 7:0) of a 64-bit mode interrupt gate are similar but not iden-
tical to legacy 32-bit interrupt gates. The type field (bits 11:8 in bytes 7:4) is
described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is
used by the stack switching mechanisms described in Section 5.14.5, “Interrupt
Stack Table.” Bytes 11:8 hold the upper 32 bits of the target RIP (interrupt segment
offset) in canonical form. A general-protection exception (#GP) is generated if soft-

Vol. 3 5-23

INTERRUPT AND EXCEPTION HANDLING

ware attempts to reference an interrupt gate with a target RIP that is not in canonical
form.

The target code segment referenced by the interrupt gate must be a 64-bit code
segment (CS.L = 1, CS.D = 0). If the target is not a 64-bit code segment, a general-
protection exception (#GP) is generated with the IDT vector number reported as the
error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode
and compatibility mode). Legacy 32-bit interrupt or trap gate types (OEH or OFH) are
redefined in IA-32e mode as 64-bit interrupt and trap gate types. No 32-bit interrupt
or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

5.14.2 64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of
interrupt-stack-frame pushes. SS:ESP is pushed only on a CPL change. In 64-bit
mode, the size of interrupt stack-frame pushes is fixed at eight bytes. This is because
only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP uncon-
ditionally, rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems
with a consistent interrupt-stackframe size across all interrupts. Interrupt service-
routine entry points that handle interrupts generated by the INTn instruction or
external INTR# signal can push an additional error code place-holder to maintain
consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or
exception causes a stack frame to be pushed. This causes the stack frame and
succeeding pushes done by an interrupt handler to be at arbitrary alignments. In
IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack
frame. The stack frame itself is aligned on a 16-byte boundary when the interrupt
handler is called. The processor can arbitrarily realign the new RSP on interrupts
because the previous (possibly unaligned) RSP is unconditionally saved on the newly
aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte
boundary before interrupts are re-enabled. This allows the stack to be formatted for
optimal storage of 16-byte XMM registers, which enables the interrupt handler to use
faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of conse-
quence for the kernel-mode case where there is no stack switch or IST used. For a
stack switch or IST, the OS would have presumably put suitably aligned RSP values in
the TSS.

5-24 Vol.3

INTERRUPT AND EXCEPTION HANDLING

5.14.3 IRET in IA-32e Mode

In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that
forces this requirement. The stack is formatted in such a way that for actions where
IRET is required, the 8-byte IRET operand size works correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an
IRET must pop eight byte items off the stack. This is accomplished by preceding the
IRET with a 64-bit operand-size prefix. The size of the pop is determined by the
address size of the instruction. The SS/ESP/RSP size adjustment is determined by
the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is
executed in 64-bit mode. In compatibility mode, IRET pops SS:RSP off the stack only
if there is a CPL change. This allows legacy applications to execute properly in
compatibility mode when using the IRET instruction. 64-bit interrupt service routines
that exit with an IRET unconditionally pop SS:RSP off of the interrupt stack frame,
even if the target code segment is running in 64-bit mode or at CPL = 0. This is
because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the
target mode is 64-bit mode and the target CPL <> 3, IRET allows SS to be loaded
with a NULL selector. As part of the stack switch mechanism, an interrupt or excep-
tion sets the new SS to NULL, instead of fetching a new SS selector from the TSS and
loading the corresponding descriptor from the GDT or LDT. The new SS selector is set
to NULL in order to properly handle returns from subsequent nested far transfers. If
the called procedure itself is interrupted, the NULL SS is pushed on the stack frame.
On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor
not to load a new SS descriptor.

5.14.4 Stack Switching in IA-32e Mode

The IA-32 architecture provides a mechanism to automatically switch stack frames in
response to an interrupt. The 64-bit extensions of Intel 64 architecture implement a
modified version of the legacy stack-switching mechanism and an alternative stack-
switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e
mode, the legacy stack-switch mechanism is modified. When stacks are switched as
part of a 64-bit mode privilege-level change (resulting from an interrupt), a new SS
descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS.
The new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The new SS is set to NULL in order to handle nested far transfers (CALLF, INT,
interrupts and exceptions). The old SS and RSP are saved on the new stack

(Figure 5-8). On the subsequent IRET, the old SS is popped from the stack and
loaded into the SS register.

Vol.3 5-25

INTERRUPT AND EXCEPTION HANDLING

In summary, a stack switch in IA-32e mode works like the legacy stack switch,
except that a new SS selector is not loaded from the TSS. Instead, the new SS is
forced to NULL.

Stack Usage with
Privilege-Level Change

Legacy Mode 1A-32e Mode

Handler’s Stack Handler’s Stack

+20 SS SS +40
+16 ESP ESP +32
+12| EFLAGS EFLAGS +24
+8 cS cS +16
+4 EIP EIP +8

<«— Stack Pointer After —> Error Code 0

Transfer to Handler

0 Error Code

Figure 5-8. IA-32e Mode Stack Usage After Privilege Level Change

5.14.5 Interrupt Stack Table

In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alter-
native to the modified legacy stack-switching mechanism described above. This
mechanism unconditionally switches stacks when it is enabled. It can be enabled on
an individual interrupt-vector basis using a field in the IDT entry. This means that
some interrupt vectors can use the modified legacy mechanism and others can use
the IST mechanism.

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode
TSS. The motivation for the IST mechanism is to provide a method for specific inter-
rupts (such as NMI, double-fault, and machine-check) to always execute on a known
good stack. In legacy mode, interrupts can use the task-switch mechanism to set up
a known-good stack by accessing the interrupt service routine through a task gate
located in the IDT. However, the legacy task-switch mechanism is not supported in
IA-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are
referenced by an interrupt-gate descriptor in the interrupt-descriptor table (IDT);
see Figure 5-7. The gate descriptor contains a 3-bit IST index field that provides an
offset into the IST section of the TSS. Using the IST mechanism, the processor loads
the value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s
RPL field is set to the new CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed
onto the new stack. Interrupt processing then proceeds as normal. If the IST index is
zero, the modified legacy stack-switching mechanism described above is used.

5-26 Vol.3

INTERRUPT AND EXCEPTION HANDLING

5.15 EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts.
They are arranged in the order of vector numbers. The information contained in
these sections are as follows:

Exception Class — Indicates whether the exception class is a fault, trap, or
abort type. Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable to interrupts.)

Description — Gives a general description of the purpose of the exception or
interrupt type. It also describes how the processor handles the exception or
interrupt.

Exception Error Code — Indicates whether an error code is saved for the
exception. If one is saved, the contents of the error code are described. (This
section is not applicable to interrupts.)

Saved Instruction Pointer — Describes which instruction the saved (or return)
instruction pointer points to. It also indicates whether the pointer can be used to
restart a faulting instruction.

Program State Change — Describes the effects of the exception or interrupt on
the state of the currently running program or task and the possibilities of
restarting the program or task without loss of continuity.

Vol. 3 5-27

INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is O or that the result
cannot be represented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany the divide error, because the exception
occurs before the faulting instruction is executed.

5-28 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish
between traps or faults by examining the contents of DR6
and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected.
Whether the exception is a fault or a trap depends on the condition (see Table 5-3).
See Chapter 18, "Debugging and Performance Monitoring,” for detailed information
about the debug exceptions.

Table 5-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
I/0 read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault

Single-step Trap

Task-switch Trap

Exception Error Code

None. An exception handler can examine the debug registers to determine which
condition caused the exception.

Saved Instruction Pointer

Fault — Saved contents of CS and EIP registers point to the instruction that gener-
ated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the
instruction that generated the exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because
the exception occurs before the faulting instruction is executed. The program can
resume normal execution upon returning from the debug exception handler.

Trap — A program-state change does accompany the debug exception, because the
instruction or task switch being executed is allowed to complete before the exception
is generated. However, the new state of the program is not corrupted and execution
of the program can continue reliably.

Vol. 3 5-29

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the
processor’s NMI pin or through an NMI request set by the I/O APIC to the local APIC.
This interrupt causes the NMI interrupt handler to be called.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved
contents of CS and EIP registers point to the next instruction to be executed at the
point the interrupt is taken. See Section 5.5, “Exception Classifications,” for more
information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the
NMI is generated. A program or task can thus be restarted upon returning from an
interrupt handler without loss of continuity, provided the interrupt handler saves the
state of the processor before handling the interrupt and restores the processor’s
state prior to a return.

5-30 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint
trap to be generated. Typically, a debugger sets a breakpoint by replacing the first
opcode byte of an instruction with the opcode for the INT 3 instruction. (The INT 3
instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging
tool can use a data segment mapped to the same physical address space as the code
segment to place an INT 3 instruction in places where it is desired to call the
debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient
to set breakpoints with the debug registers. (See Section 18.3.2, “"Breakpoint Excep-
tion (#BP)—Interrupt Vector 3,” for information about the breakpoint exception.) If
more breakpoints are needed beyond what the debug registers allow, the INT 3
instruction can be used.

The breakpoint (#BP) exception can also be generated by executing the INT n
instruction with an operand of 3. The action of this instruction (INT 3) is slightly
different than that of the INT 3 instruction (see “INTn/INTO/INT3—Call to Interrupt
Procedure” in Chapter 3 of the Inte/l® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 2A).

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3
instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the
state of the program is essentially unchanged because the INT 3 instruction does not
affect any register or memory locations. The debugger can thus resume the
suspended program by replacing the INT 3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register.
Upon returning from the debugger, program execution resumes with the replaced
instruction.

Vol. 3 5-31

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—O0verflow Exception (#O0F)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The
INTO instruction checks the state of the OF flag in the EFLAGS register. If the OF flag
is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and
unsigned arithmetic. These instructions set the OF and CF flags in the EFLAGS
register to indicate signed overflow and unsigned overflow, respectively. When
performing arithmetic on signed operands, the OF flag can be tested directly or the
INTO instruction can be used. The benefit of using the INTO instruction is that if the
overflow exception is detected, an exception handler can be called automatically to
handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state
of the program is essentially unchanged because the INTO instruction does not affect
any register or memory locations. The program can thus resume normal execution
upon returning from the overflow exception handler.

5-32 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction
was executed. The BOUND instruction checks that a signed array index is within the
upper and lower bounds of an array located in memory. If the array index is not
within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that
generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the
operands for the BOUND instruction are not modified. Returning from the BOUND-
range-exceeded exception handler causes the BOUND instruction to be restarted.

Vol.3 5-33

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description

Indicates that the processor did one of the following things:

Attempted to execute an invalid or reserved opcode.

Attempted to execute an instruction with an operand type that is invalid for its
accompanying opcode; for example, the source operand for a LES instruction is
not a memory location.

Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or
IA-32 processor that does not support the MMX technology or
SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate
support for these extensions.

Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD
instruction (with the exception of the MOVNTI, PAUSE, PREFETCHhA, SFENCE,
LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions) when the EM
flag in control register CRO is set (1).

Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit
in control register CR4 is clear (0). Note this does not include the following
SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ, MOVNTI, PREFETCHAh,
SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB,
PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB,
PMULHUW, PSADBW, PSHUFW, PADDQ, PSUBQ, PALIGNR, PABSB, PABSD,
PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or
IA-32 processor that caused a SIMD floating-point exception when the
OSXMMEXCPT bit in control register CR4 is clear (0).

Executed a UD2 instruction. Note that even though it is the execution of the UD2
instruction that causes the invalid opcode exception, the saved instruction
pointer will still points at the UD2 instruction.

Detected a LOCK prefix that precedes an instruction that may not be locked or
one that may be locked but the destination operand is not a memory location.

Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchi-
tectures, this exception is not generated until an attempt is made to retire the result
of executing an invalid instruction; that is, decoding and speculatively attempting to
execute an invalid opcode does not generate this exception. Likewise, in the Pentium

5-34 Vol.3

INTERRUPT AND EXCEPTION HANDLING

processor and earlier IA-32 processors, this exception is not generated as the result
of prefetching and preliminary decoding of an invalid instruction. (See Section 5.5,
“Exception Classifications,” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32
architectures. These opcodes, even though undefined, do not generate an invalid
opcode exception.

The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the
invalid instruction is not executed.

Vol.3 5-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description
Indicates one of the following things:

The device-not-available exception is generated by either of three conditions:

®* The processor executed an x87 FPU floating-point instruction while the EM flag in
control register CRO was set (1). See the paragraph below for the special case of
the WAIT/FWAIT instruction.

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of
register CRO were set, regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with
the exception of MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and
CLFLUSH) while the TS flag in control register CRO was set and the EM flag is
clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-
point unit. A device-not-available exception is then generated each time an x87 FPU
floating-point instruction is encountered, allowing an exception handler to call
floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last
time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction was executed; but
that the context of the x87 FPU, XMM, and MXCSR registers were not saved. When
the TS flag is set and the EM flag is clear, the processor generates a device-not-avail-
able exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction
is encountered (with the exception of the instructions listed above). The exception
handler can then save the context of the x87 FPU, XMM, and MXCSR registers before
it executes the instruction. See Section 2.5, "Control Registers,” for more information
about the TS flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT
or FWAIT instructions should generate a device-not-available exception. It extends
the function of the TS flag to the WAIT and FWAIT instructions, giving the exception
handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286
and Intel386 DX processors. For programs running on the Pentium 4, Intel Xeon, P6
family, Pentium, or Intel486 DX processors, or the Intel 487 SX coprocessors, the MP
flag should always be set; for programs running on the Intel486 SX processor, the MP
flag should be clear.

Exception Error Code

None.

5-36 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or
the WAIT/FWAIT instruction that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because
the instruction that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruc-
tion pointed to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can
save the context of the x87 FPU, clear the TS flag, and continue execution at the
interrupted floating-point or WAIT/FWAIT instruction.

Vol. 3 5-37

INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception
handler for a prior exception. Normally, when the processor detects another excep-
tion while trying to call an exception handler, the two exceptions can be handled seri-
ally. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the
processor divides the exceptions into three classes: benign exceptions, contributory
exceptions, and page faults (see Table 5-4).

Table 5-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and 1 Debug
Interrupts 2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 5-5 shows the various combinations of exception classes that cause a double
fault to be generated. A double-fault exception falls in the abort class of exceptions.
The program or task cannot be restarted or resumed. The double-fault handler can
be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the
system.

5-38 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

A segment or page fault may be encountered while prefetching instructions;
however, this behavior is outside the domain of Table 5-5. Any further faults gener-
ated while the processor is attempting to transfer control to the appropriate fault
handler could still lead to a double-fault sequence.

Table 5-5. Conditions for Generating a Double Fault

First Exception

Second Exception

Benign

Contributory

Page Fault

Benign

Contributory

Page Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double
Fault

Generate a Double
Fault

Handle Exceptions
Serially

Handle Exceptions
Serially

Generate a Double Fault

If another exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execu-
tion of an HLT instruction. In this mode, the processor stops executing instructions
until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is received. The
processor generates a special bus cycle to indicate that it has entered shutdown
mode. Software designers may need to be aware of the response of hardware when
it goes into shutdown mode. For example, hardware may turn on an indicator light on
the front panel, generate an NMI interrupt to record diagnostic information, invoke
reset initialization, generate an INIT initialization, or generate an SMI. If any events
are pending during shutdown, they will be handled after an wake event from shut-
down is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then
only a hardware reset can restart the processor. Likewise, if the shutdown occurs
while executing in SMM, a hardware reset must be used to restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-
fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task
cannot be resumed or restarted. The only available action of the double-fault excep-
tion handler is to collect all possible context information for use in diagnostics and
then close the application and/or shut down or reset the processor.

Vol. 3 5-39

INTERRUPT AND EXCEPTION HANDLING

If the double fault occurs when any portion of the exception handling machine state
is corrupted, the handler cannot be invoked and the processor must be reset.

5-40 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors
do not generate this exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor
detected a page or segment violation while transferring the middle portion of an
Intel 387 math coprocessor operand. The P6 family, Pentium, and Intel486 proces-
sors do not generate this exception; instead, this condition is detected with a general
protection exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is unde-
fined. The program or task cannot be resumed or restarted. The only available action
of the exception handler is to save the instruction pointer and reinitialize the x87 FPU
using the FNINIT instruction.

Vol. 3 5-41

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Exception Class

Description

Fault.

Indicates that there was an error related to a TSS. Such an error might be detected
during a task switch or during the execution of instructions that use information from
a TSS. Table 5-6 shows the conditions that cause an invalid TSS exception to be

generated.

Table 5-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than
2CH for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector
indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds
descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor
indicates an inactive task.

TSS segment selector index

During an IRET task switch, an attempt to load the backlink limit
faults.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor
which is not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS descriptor is not writable.

TSS segment selector index

Stores to the old TSS encounter a fault condition.

TSS segment selector index

The old TSS descriptor is not writable for a jump or IRET task
switch.

TSS segment selector index

The new TSS backlink is not writable for a call or exception task
switch.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the
new TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an
attempt to lock the new TSS.

LDT segment selector index

LDT or LDT not present.

5-42 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Table 5-6. Invalid TSS Conditions (Contd.)

Error Code Index

Invalid Condition

Stack segment selector
index

The stack segment selector exceeds descriptor table limit.

Stack segment selector
index

The stack segment selector is NULL.

Stack segment selector
index

The stack segment descriptor is @ non-data segment.

Stack segment selector
index

The stack segment is not writable.

Stack segment selector
index

The stack segment DPL I= CPL.

Stack segment selector
index

The stack segment selector RPL != CPL.

Code segment selector
index

The code segment selector exceeds descriptor table limit.

Code segment selector
index

The code segment selector is NULL.

Code segment selector
index

The code segment descriptor is not a code segment type.

Code segment selector
index

The nonconforming code segment DPL != CPL.

Code segment selector
index

The conforming code segment DPL is greater than CPL.

Data segment selector index

The data segment selector exceeds the descriptor table limit.

Data segment selector index

The data segment descriptor is not a readable code or data type.

Data segment selector index

The data segment descriptor is a nonconforming code type and RPL
> DPL.

Data segment selector index

The data segment descriptor is a nonconforming code type and CPL
> DPL.

TSS segment selector index

The TSS segment selector is NULL for LTR.

TSS segment selector index

The TSS segment selector has the Tl bit set for LTR.

TSS segment selector index

The TSS segment descriptor/upper descriptor is beyond the GDT
segment limit.

TSS segment selector index

The TSS segment descriptor is not an available TSS type.

TSS segment selector index

The TSS segment descriptor is an available 286 TSS type in IA-32e
mode.

Vol. 3 5-43

INTERRUPT AND EXCEPTION HANDLING

Table 5-6. Invalid TSS Conditions (Contd.)

Error Code Index Invalid Condition

TSS segment selector index | The TSS segment upper descriptor is not the correct type.

TSS segment selector index | The TSS segment descriptor contains a non-canonical base.

TSS segment selector index | There is a limit violation in attempting to load SS selector or ESP
from a TSS on a call or exception which changes privilege levels in
legacy mode.

TSS segment selector index | There is a limit violation or canonical fault in attempting to load RSP
or IST from a TSS on a call or exception which changes privilege
levels in IA-32e mode.

This exception can generated either in the context of the original task or in the
context of the new task (see Section 6.3, “Task Switching”). Until the processor has
completely verified the presence of the new TSS, the exception is generated in the
context of the original task. Once the existence of the new TSS is verified, the task
switch is considered complete. Any invalid-TSS conditions detected after this point
are handled in the context of the new task. (A task switch is considered complete
when the task register is loaded with the segment selector for the new TSS and, if the
switch is due to a procedure call or interrupt, the previous task link field of the new
TSS references the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this excep-
tion inside the faulting TSS context is not recommended because the processor state
may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception was caused by an event external to the currently
running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the
saved contents of CS and EIP registers point to the instruction that invoked the task
switch. If the exception condition was detected after the task switch was carried out,
the saved contents of CS and EIP registers point to the first instruction of the new
task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error
condition than causes the fault. See Section 6.3, “"Task Switching,” for more informa-
tion on the task switch process and the possible recovery actions that can be taken.

5-44 Vol.3

INTERRUPT AND EXCEPTION HANDLING

If an invalid TSS exception occurs during a task switch, it can occur before or after
the commit-to-new-task point. If it occurs before the commit point, no program state
change occurs. If it occurs after the commit point (when the segment descriptor
information for the new segment selectors have been loaded in the segment regis-
ters), the processor will load all the state information from the new TSS before it
generates the exception. During a task switch, the processor first loads all the
segment registers with segment selectors from the TSS, then checks their contents
for validity. If an invalid TSS exception is discovered, the remaining segment regis-
ters are loaded but not checked for validity and therefore may not be usable for refer-
encing memory. The invalid TSS handler should not rely on being able to use the
segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before
trying to resume the new task; otherwise, general-protection exceptions (#GP) may
result later under conditions that make diagnosis more difficult. The Intel recom-
mended way of dealing situation is to use a task for the invalid TSS exception
handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them
from the TSS.

Vol. 3 5-45

INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor
can generate this exception during any of the following operations:

®* While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-
present segment while loading the SS register causes a stack fault exception
(#SS) to be generated.] This situation can occur while performing a task switch.

®* While attempting to load the LDTR using an LLDT instruction. Detection of a not-
present LDT while loading the LDTR during a task switch operation causes an
invalid-TSS exception (#TS) to be generated.

®* When executing the LTR instruction and the TSS is marked not present.

®* While attempting to use a gate descriptor or TSS that is marked segment-not-
present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement
virtual memory at the segment level. If the exception handler loads the segment and
returns, the interrupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a
segment is not present (because gates do not correspond to segments). The oper-
ating system may use the present flag for gate descriptors to trigger exceptions of
special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present
segment would cause a double fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that
caused the violation is pushed onto the stack of the exception handler. If the EXT flag
is set, it indicates that the exception resulted from either:

®* an external event (NMI or INTR) that caused an interrupt, which subsequently
referenced a not-present segment

®* a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT
entry for an interrupt being serviced references a not-present gate. Such an event
could be generated by an INT instruction or a hardware interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that
generated the exception. If the exception occurred while loading segment descrip-

5-46 Vol.3

INTERRUPT AND EXCEPTION HANDLING

tors for the segment selectors in a new TSS, the CS and EIP registers point to the first
instruction in the new task. If the exception occurred while accessing a gate
descriptor, the CS and EIP registers point to the instruction that invoked the access
(for example a CALL instruction that references a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS,
DS, SS, ES, FS, GS, or LDTR), a program-state change does accompany the excep-
tion because the register is not loaded. Recovery from this exception is possible by

simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a
program-state change does not accompany the exception. Recovery from this excep-
tion is possible merely by setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before
or after the commit-to-new-task point (see Section 6.3, “Task Switching”). If it
occurs before the commit point, no program state change occurs. If it occurs after
the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The segment-not-present exception handler should not rely on being
able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers
without causing another exception. (See the Program State Change description for
“Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information
on how to handle this situation.)

Vol. 3 5-47

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:

®* Alimit violation is detected during an operation that refers to the SS register.
Operations that can cause a limit violation include stack-oriented instructions
such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as other memory
references which implicitly or explicitly use the SS register (for example, MOV
AX, [BP+6] or MOV AX, SS:[EAX+6]). The ENTER instruction generates this
exception when there is not enough stack space for allocating local variables.

®* A not-present stack segment is detected when attempting to load the SS register.
This violation can occur during the execution of a task switch, a CALL instruction
to a different privilege level, a return to a different privilege level, an LSS
instruction, or a MOV or POP instruction to the SS register.

®* A canonical violation is detected in 64-bit mode during an operation that
reference memory using the stack pointer register containing a non-canonical
memory address.

Recovery from this fault is possible by either extending the limit of the stack segment
(in the case of a limit violation) or loading the missing stack segment into memory (in
the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software,
recovery is possible by loading the correct canonical value into RSP. Otherwise, a
canonical violation of the address in RSP likely reflects some register corruption in
the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new
stack during an inter-privilege-level call, the error code contains a segment selector
for the segment that caused the exception. Here, the exception handler can test the
present flag in the segment descriptor pointed to by the segment selector to deter-
mine the cause of the exception. For a hormal limit violation (on a stack segment
already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. However, when the exception results from attempting to
load a not-present stack segment during a task switch, the CS and EIP registers point
to the first instruction of the new task.

5-48 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Program State Change

A program-state change does not generally accompany a stack-fault exception,
because the instruction that generated the fault is not executed. Here, the instruction
can be restarted after the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task
point (see Section 6.3, "Task Switching”). Here, the processor loads all the state
information from the new TSS (without performing any additional limit, present, or
type checks) before it generates the exception. The stack fault handler should thus
not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. The exception handler should
check all segment registers before trying to resume the new task; otherwise, general
protection faults may result later under conditions that are more difficult to diagnose.
(See the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)

Vol. 3 5-49

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called
“general-protection violations.” The conditions that cause this exception to be gener-
ated comprise all the protection violations that do not cause other exceptions to be
generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault
exceptions). The following conditions cause general-protection exceptions to be
generated:

®* Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS
segments.

®* Exceeding the segment limit when referencing a descriptor table (except during a
task switch or a stack switch).

®* Transferring execution to a segment that is not executable.
® Writing to a code segment or a read-only data segment.
®* Reading from an execute-only code segment.

®* Loading the SS register with a segment selector for a read-only segment (unless
the selector comes from a TSS during a task switch, in which case an invalid-TSS
exception occurs).

®* Loading the SS, DS, ES, FS, or GS register with a segment selector for a system
segment.

®* Loading the DS, ES, FS, or GS register with a segment selector for an execute-
only code segment.

®* Loading the SS register with the segment selector of an executable segment or a
null segment selector.

®* Loading the CS register with a segment selector for a data segment or a null
segment selector.

® Accessing memory using the DS, ES, FS, or GS register when it contains a null
segment selector.

® Switching to a busy task during a call or jump to a TSS.

®* Using a segment selector on a non-IRET task switch that points to a TSS
descriptor in the current LDT. TSS descriptors can only reside in the GDT. This
condition causes a #TS exception during an IRET task switch.

®* Violating any of the privilege rules described in Chapter 4, “Protection.”

®* Exceeding the instruction length limit of 15 bytes (this only can occur when
redundant prefixes are placed before an instruction).

®* Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).

5-50 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Loading the CRO register with a set NW flag and a clear CD flag.

Referencing an entry in the IDT (following an interrupt or exception) that is not
an interrupt, trap, or task gate.

Attempting to access an interrupt or exception handler through an interrupt or
trap gate from virtual-8086 mode when the handler’s code segment DPL is
greater than 0.

Attempting to write a 1 into a reserved bit of CR4.

Attempting to execute a privileged instruction when the CPL is not equal to 0 (see
Section 4.9, “Privileged Instructions,” for a list of privileged instructions).

Writing to a reserved bit in an MSR.
Accessing a gate that contains a null segment selector.

Executing the INT n instruction when the CPL is greater than the DPL of the
referenced interrupt, trap, or task gate.

The segment selector in a call, interrupt, or trap gate does not point to a code
segment.

The segment selector operand in the LLDT instruction is a local type (TI flag is
set) or does not point to a segment descriptor of the LDT type.

The segment selector operand in the LTR instruction is local or points to a TSS
that is not available.

The target code-segment selector for a call, jump, or return is null.

If the PAE and/or PSE flag in control register CR4 is set and the processor detects
any reserved bits in a page-directory-pointer-table entry set to 1. These bits are
checked during a write to control registers CR0O, CR3, or CR4 that causes a
reloading of the page-directory-pointer-table entry.

Attempting to write a non-zero value into the reserved bits of the MXCSR register.

Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit
memory location that is not aligned on a 16-byte boundary when the instruction
requires 16-byte alignment. This condition also applies to the stack segment.

A program or task can be restarted following any general-protection exception. If the
exception occurs while attempting to call an interrupt handler, the interrupted
program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault
condition was detected while loading a segment descriptor, the error code contains a
segment selector to or IDT vector number for the descriptor; otherwise, the error
code is 0. The source of the selector in an error code may be any of the following:

An operand of the instruction.
A selector from a gate which is the operand of the instruction.

Vol. 3 5-51

INTERRUPT AND EXCEPTION HANDLING

® A selector from a TSS involved in a task switch.
® IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

In general, a program-state change does not accompany a general-protection excep-
tion, because the invalid instruction or operation is not executed. An exception
handler can be designhed to correct all of the conditions that cause general-protection
exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or
after the commit-to-new-task point (see Section 6.3, “Task Switching”). If it occurs
before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates
the exception. The general-protection exception handler should thus not rely on
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:
® If the memory address is in a non-canonical form.
* If a segment descriptor memory address is in non-canonical form.

* If the target offset in a destination operand of a call or jmp is in a non-canonical
form.

®* If a code segment or 64-bit call gate overlaps non-canonical space.

* If the code segment descriptor pointed to by the selector in the 64-bit gate
doesn't have the L-bit set and the D-bit clear.

® If the EFLAGS.NT bit is set in IRET.

* If the stack segment selector of IRET is null when going back to compatibility
mode.

* If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.

* If a null stack segment selector RPL of IRET is not equal to CPL going back to non-
CPL3 and 64-bit mode.

* If the proposed new code segment descriptor of IRET has both the D-bit and the
L-bit set.

5-52 Vol.3

INTERRUPT AND EXCEPTION HANDLING

If the segment descriptor pointed to by the segment selector in the destination
operand is a code segment and it has both the D-bit and the L-bit set.

If the segment descriptor from a 64-bit call gate is in non-canonical space.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit
call-gate.

If the upper type field of a 64-bit call gate is not 0x0.

If an attempt is made to load a null selector in the SS register in compatibility
mode.

If an attempt is made to load null selector in the SS register in CPL3 and 64-bit
mode.

If an attempt is made to load a null selector in the SS register in non-CPL3 and
64-bit mode where RPL is not equal to CPL.

If an attempt is made to clear CR0.PG while IA-32e mode is enabled.
If an attempt is made to set a reserved bit in CR3, CR4 or CRS.

Vol. 3 5-53

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the
processor detected one of the following conditions while using the page-translation
mechanism to translate a linear address to a physical address:

The P (present) flag in a page-directory or page-table entry needed for the
address translation is clear, indicating that a page table or the page containing
the operand is not present in physical memory.

The procedure does not have sufficient privilege to access the indicated page
(that is, a procedure running in user mode attempts to access a supervisor-mode
page).

Code running in user mode attempts to write to a read-only page. In the Intel486
and later processors, if the WP flag is set in CRO, the page fault will also be
triggered by code running in supervisor mode that tries to write to a read-only
user-mode page.

An instruction fetch to a linear address that translates to a physical address in a
memory page with the execute-disable bit set (for Intel 64 and IA-32 processors
that support the execute disable bit, see Section 3.10, “"PAE-Enabled Paging in
IA-32e Mode”).

One or more reserved bits in page directory entry are set to 1. See description
below of RSVD error code flag.

The exception handler can recover from page-not-present conditions and restart the
program or task without any loss of program continuity. It can also restart the
program or task after a privilege violation, but the problem that caused the privilege
violation may be uncorrectable.

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of
information to aid in diagnosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different
from that for other exceptions (see Figure 5-9). The error code tells the
exception handler four things:

— The P flag indicates whether the exception was due to a not-present page (0)
or to either an access rights violation or the use of a reserved bit (1).

— The W/R flag indicates whether the memory access that caused the exception
was a read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1)
or supervisor mode (0) at the time of the exception.

5-54 Vol.3

INTERRUPT AND EXCEPTION HANDLING

— The RSVD flag indicates that the processor detected 1s in reserved bits of the
page directory, when the PSE or PAE flags in control register CR4 are set to 1.

Note:

* The PSE flag is only available in recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, P6 family, and Pentium processors.

* The PAE flag is only available on recent Intel 64 and IA-32 processors
including the Pentium 4, Intel Xeon, and P6 family processors.

* In earlier IA-32 processor, the bit position of the RSVD flag is reserved.

— The I/D flag indicates whether the exception was caused by an instruction
fetch. This flag is reserved if the processor does not support execute-disable
bit or execute disable bit feature is not enabled (see Section 3.10).

31

an| ~
AASY| w
s/n| ™~
dIM| —
d o

Reserved

WIR

u/s

RSVD

I/D

—_

—_

_0

The fault was caused by a non-present page.
The fault was caused by a page-level protection violation.

The access causing the fault was a read.
The access causing the fault was a write.

The access causing the fault originated when the processor
was executing in supervisor mode.

The access causing the fault originated when the processor
was executing in user mode.

The fault was not caused by reserved bit violation.
The fault was caused by reserved bits set to 1 in a page directory.

The fault was not caused by an instruction fetch.
The fault was caused by an instruction fetch.

Figure 5-9. Page-Fault Error Code

The contents of the CR2 register. The processor loads the CR2 register with the
32-bit linear address that generated the exception. The page-fault handler can
use this address to locate the corresponding page directory and page-table
entries. Another page fault can potentially occur during execution of the page-
fault handler; the handler should save the contents of the CR2 register before a
second page fault can occur.! If a page fault is caused by a page-level protection

1.

Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an
earlier page fault is being delivered, the faulting linear address of the second fault will overwrite
the contents of CR2 (replacing the previous address). These updates to CR2 occur even if the
page fault results in a double fault or occurs during the delivery of a double fault.

Vol. 3 5-55

INTERRUPT AND EXCEPTION HANDLING

violation, the access flag in the page-directory entry is set when the fault occurs.
The behavior of IA-32 processors regarding the access flag in the corresponding
page-table entry is model specific and not architecturally defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that
generated the exception. If the page-fault exception occurred during a task switch,
the CS and EIP registers may point to the first instruction of the new task (as
described in the following “"Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception,
because the instruction that causes the exception to be generated is not executed.
After the page-fault exception handler has corrected the violation (for example,
loaded the missing page into memory), execution of the program or task can be
resumed.

When a page-fault exception is generated during a task switch, the program-state
may change, as follows. During a task switch, a page-fault exception can occur
during any of following operations:

®* While writing the state of the original task into the TSS of that task.
® While reading the GDT to locate the TSS descriptor of the new task.
®* While reading the TSS of the new task.

®* While reading segment descriptors associated with segment selectors from the
new task.

®* While reading the LDT of the new task to verify the segment registers stored in
the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruc-
tion pointer refers to the first instruction of the new task, not to the instruction which
caused the task switch (or the last instruction to be executed, in the case of an inter-
rupt). If the design of the operating system permits page faults to occur during task-
switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state infor-
mation from the new TSS (without performing any additional limit, present, or type
checks) before it generates the exception. The page-fault handler should thus not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and
GS registers without causing another exception. (See the Program State Change
description for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for addi-
tional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an
explicit stack switch does not cause the processor to use an invalid stack pointer

5-56 Vol.3

INTERRUPT AND EXCEPTION HANDLING

(SS:ESP). Software written for 16-bit IA-32 processors often use a pair of instruc-
tions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the
segment selector has been loaded into the SS register but before the ESP register
has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler
switches to a well defined stack (that is, the handler is a task or a more privileged
procedure). However, if the exception handler is called at the same privilege level
and from the same task, the processor will attempt to use the inconsistent stack
pointer.

In systems that handle page-fault, general-protection, or alignment check excep-
tions within the faulting task (with trap or interrupt gates), software executing at the
same privilege level as the exception handler should initialize a new stack by using
the LSS instruction rather than a pair of MOV instructions, as described earlier in this
note. When the exception handler is running at privilege level 0 (the normal case),
the problem is limited to procedures or tasks that run at privilege level 0, typically
the kernel of the operating system.

Vol. 3 5-57

INTERRUPT AND EXCEPTION HANDLING

Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the
register CRO must be set for an interrupt 16 (floating-point error exception) to be
generated. (See Section 2.5, “"Control Registers,” for a detailed description of the NE

flag.)

NOTE

SIMD floating-point exceptions (#XM) are signaled through interrupt
19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of
floating-point error conditions:

®* Invalid operation (#I)
— Stack overflow or underflow (#IS)
— Invalid arithmetic operation (#IA)

®* Divide-by-zero (#2)

®* Denormalized operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

®* Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of
exception type, the x87 FPU provides a flag in the x87 FPU status register and a mask
bit in the x87 FPU control register. If the x87 FPU detects a floating-point error and
the mask bit for the exception type is set, the x87 FPU handles the exception auto-
matically by generating a predefined (default) response and continuing program
execution. The default responses have been designed to provide a reasonable result
for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CRO is set, the x87
FPU does the following:

1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream.

3. Generates an internal error signal that cause the processor to generate a
floating-point exception (#MF).

5-58 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the
x87 FPU checks for pending x87 FPU floating-point exceptions (as described in step 2
above). Pending x87 FPU floating-point exceptions are ignored for “non-waiting” x87
FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored
when executing the state management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU
floating-point-error exception handler can determine the error condition that caused
the exception from the settings of the flags in the x87 FPU status word. See “Soft-
ware Exception Handling” in Chapter 8 of the Inte/® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 1, for more information on handling x87 FPU
floating-point exceptions.

Exception Error Code

None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT
instruction that was about to be executed when the floating-point-error exception
was generated. This is not the faulting instruction in which the error condition was
detected. The address of the faulting instruction is contained in the x87 FPU instruc-
tion pointer register. See “"x87 FPU Instruction and Operand (Data) Pointers” in
Chapter 8 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 1, for more information about information the FPU saves for use in handling
floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception
because the handling of the exception is delayed until the next waiting x87 FPU
floating-point or WAIT/FWAIT instruction following the faulting instruction. The x87
FPU, however, saves sufficient information about the error condition to allow
recovery from the error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of
an x87 FPU floating-point instruction, a WAIT or FWAIT instruction can be inserted in
front of a dependent instruction to force a pending x87 FPU floating-point exception
to be handled before the dependent instruction is executed. See “"x87 FPU Exception
Synchronization” in Chapter 8 of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about synchronization of x87
floating-point-error exceptions.

Vol. 3 5-59

INTERRUPT AND EXCEPTION HANDLING

Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment
checking was enabled. Alignment checks are only carried out in data (or stack)
accesses (not in code fetches or system segment accesses). An example of an align-
ment-check violation is a word stored at an odd byte address, or a doubleword stored
at an address that is not an integer multiple of 4. Table 5-7 lists the alignment
requirements various data types recognized by the processor.

Table 5-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By
Word 2

Doubleword 4

Single-precision floating-point (32-bits) 4

Double-precision floating-point (64-bits) 8

Double extended-precision floating-point (80- 8

bits)

Quadword 8

Double quadword 16

Segment Selector 2

32-bit Far Pointer 2

48-bit Far Pointer 4

32-bit Pointer 4

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size
Bit String 2 or 4 depending on the operand-size attribute.

Note that the alignment check exception (#AC) is generated only for data types that
must be aligned on word, doubleword, and quadword boundaries. A general-protec-
tion exception (#GP) is generated 128-bit data types that are not aligned on a
16-byte boundary.

To enable alignment checking, the following conditions must be true:
®* AM flag in CRO register is set.

5-60 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

®* AC flag in the EFLAGS register is set.
® The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege
level 3 (user mode). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate alignment-check exceptions, even when
caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at
privilege level 3 can generate an alignment-check exception. Although application
programs do not normally store these registers, the fault can be avoided by aligning
the information stored on an even word-address.

The FXSAVE and FXRSTOR instructions save and restore a 512-byte data structure,
the first byte of which must be aligned on a 16-byte boundary. If the alignment-check
exception (#AC) is enabled when executing these instructions (and CPL is 3), a
misaligned memory operand can cause either an alignment-check exception or a
general-protection exception (#GP) depending on the processor implementation
(see “FXSAVE-Save x87 FPU, MMX, SSE, and SSE2 State” and "FXRSTOR-Restore
x87 FPU, MMX, SSE, and SSE2 State” in Chapter 3 of the Inte/l® 64 and IA-32 Archi-
tectures Software Developer’s Manual, Volume 2A).

The MOVUPS and MOVUPD instructions perform 128-bit unaligned loads or stores.
The LDDQU instructions loads 128-bit unaligned data.They do not generate general-
protection exceptions (#GP) when operands are not aligned on a 16-byte boundary.
If alignment checking is enabled, alignment-check exceptions (#AC) may or may not
be generated depending on processor implementation when data addresses are not
aligned on an 8-byte boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause
alignment-check faults. These instructions are rarely needed by application
programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the
exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the
instruction is not executed.

Vol. 3 5-61

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that
an external agent detected a bus error. The machine-check exception is model-
specific, available on the Pentium and later generations of processors. The imple-
mentation of the machine-check exception is different between different processor
families, and these implementations may not be compatible with future Intel 64 or
IA-32 processors. (Use the CPUID instruction to determine whether this feature is
present.)

Bus errors detected by external agents are signaled to the processor on dedicated
pins: the BINIT# and MCERR# pins on the Pentium 4, Intel Xeon, and P6 family
processors and the BUSCHK# pin on the Pentium processor. When one of these pins
is enabled, asserting the pin causes error information to be loaded into machine-
check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail
in Chapter 14, “"Machine-Check Architecture.” Also, see the data books for the indi-
vidual processors for processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended
machine-check state registers are directly associated with the error that caused the
machine-check exception to be generated (see Section 14.3.1.2,
“IA32_MCG_STATUS MSR,” and Section 14.3.2.6, “IA32_MCG Extended Machine
Check State MSRs”).

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the
saved contents of CS and EIP registers are directly associated with the error that
caused the machine-check exception to be generated; if the flag is clear, the saved
instruction pointer may not be associated with the error (see Section 14.3.1.2,
“IA32_MCG_STATUS MSR").

For the Pentium processor, contents of the CS and EIP registers may not be associ-
ated with the error.

Program State Change

The machine-check mechanism is enabled by setting the MCE flag in control register
CR4.

5-62 Vol.3

INTERRUPT AND EXCEPTION HANDLING

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state
change always accompanies a machine-check exception, and an abort class excep-
tion is generated. For abort exceptions, information about the exception can be
collected from the machine-check MSRs, but the program cannot generally be
restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4
is clear), a machine-check exception causes the processor to enter the shutdown
state.

Vol. 3 5-63

INTERRUPT AND EXCEPTION HANDLING

Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point excep-
tion. The appropriate status flag in the MXCSR register must be set and the particular
exception unmasked for this interrupt to be generated.

There are six classes of nhumeric exception conditions that can occur while executing
an SSE/ SSE2/SSE3 SIMD floating-point instruction:

* Invalid operation (#I)

®* Divide-by-zero (#2)

® Denormal operand (#D)

® Numeric overflow (#0)

® Numeric underflow (#U)

®* Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-
computation exceptions; that is, they are detected before any arithmetic operation
occurs. The numeric underflow, numeric overflow, and inexact result exceptions are
post-computational exceptions.

See "SIMD Floating-Point Exceptions" in Chapter 11 of the Inte/l® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1, for additional information
about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the
following things:

®* It handles the exception automatically by producing the most reasonable result
and allowing program execution to continue undisturbed. This is the response to
masked exceptions.

* It generates a SIMD floating-point exception, which in turn invokes a software
exception handler. This is the response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit
and mask bit in the MXCSR register. If an exception is masked (the corresponding
mask bit in the MXCSR register is set), the processor takes an appropriate automatic
default action and continues with the computation. If the exception is unmasked (the
corresponding mask bit is clear) and the operating system supports SIMD floating-
point exceptions (the OSXMMEXCPT flag in control register CR4 is set), a software
exception handler is invoked through a SIMD floating-point exception. If the excep-
tion is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating
system does not support unmasked SIMD floating-point exceptions), an invalid
opcode exception (#UD) is signaled instead of a SIMD floating-point exception.

5-64 Vol.3

INTERRUPT AND EXCEPTION HANDLING

Note that because SIMD floating-point exceptions are precise and occur immediately,
the situation does not arise where an x87 FPU instruction, a WAIT/FWAIT instruction,
or another SSE/SSE2/SSE3 instruction will catch a pending unmasked SIMD floating-
point exception.

In situations where a SIMD floating-point exception occurred while the SIMD
floating-point exceptions were masked (causing the corresponding exception flag to
be set) and the SIMD floating-point exception was subsequently unmasked, then no
exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands
(made up of two or four sub-operands), multiple SIMD floating-point exception
conditions may be detected. If no more than one exception condition is detected for
one or more sets of sub-operands, the exception flags are set for each exception
condition detected. For example, an invalid exception detected for one sub-operand
will not prevent the reporting of a divide-by-zero exception for another sub-operand.
However, when two or more exceptions conditions are generated for one sub-
operand, only one exception condition is reported, according to the precedences
shown in Table 5-8. This exception precedence sometimes results in the higher
priority exception condition being reported and the lower priority exception condi-
tions being ignored.

Table 5-8. SIMD Floating-Point Exceptions Priority
Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for
maximum, minimum, or certain compare and convert operations).

2 QNaN operand1.

3 Any other invalid operation exception not mentioned above or a divide-by-zero
exceptionz.

4 Denormal operand exception?.

5 Numeric overflow and underflow exceptions possibly in conjunction with the

inexact result exception®.

6 (Lowest) Inexact result exception.

NOTES:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over
lower priority exceptions. For example, a QNaN divided by zero results in a QNaN, not a divide-
by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as
well.

Exception Error Code

None.

Vol. 3 5-65

INTERRUPT AND EXCEPTION HANDLING

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction
that was executed when the SIMD floating-point exception was generated. This is the
faulting instruction in which the error condition was detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception
because the handling of the exception is immediate unless the particular exception is
masked. The available state information is often sufficient to allow recovery from the
error and re-execution of the faulting instruction if needed.

5-66 Vol. 3

INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description

Indicates that the processor did one of the following things:

® Executed an INT n instruction where the instruction operand is one of the vector
numbers from 32 through 255.

® Responded to an interrupt request at the INTR pin or from the local APIC when
the interrupt vector number associated with the request is from 32 through 255.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the
INT n instruction or instruction following the instruction on which the INTR signal
occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n
instruction or the INTR signal. The INT n instruction generates the interrupt within
the instruction stream. When the processor receives an INTR signal, it commits all
state changes for all previous instructions before it responds to the interrupt; so,
program execution can resume upon returning from the interrupt handler.

Vol. 3 5-67

INTERRUPT AND EXCEPTION HANDLING

5-68 Vol. 3

