CHAPTER 10
MEMORY CACHE CONTROL

This chapter describes the memory cache and cache control mechanisms, the TLBs,
and the store buffer in Intel 64 and IA-32 processors. It also describes the memory
type range registers (MTRRs) introduced in the P6 family processors and how they
are used to control caching of physical memory locations.

10.1  INTERNAL CACHES, TLBS, AND BUFFERS

The Intel 64 and IA-32 architectures support cache, translation look aside buffers
(TLBs), and a store buffer for temporary on-chip (and external) storage of instruc-
tions and data. (Figure 10-1 shows the arrangement of caches, TLBs, and the store
buffer for the Pentium 4 and Intel Xeon processors.) Table 10-1 shows the character-
istics of these caches and buffers for the Pentium 4, Intel Xeon, P6 family, and
Pentium processors. The sizes and characteristics of these units are machine
specific and may change in future versions of the processor. The CPUID
instruction returns the sizes and characteristics of the caches and buffers for the
processor on which the instruction is executed. See "CPUID—CPU Identification” in
Chapter 3, “Instruction Set Reference, A-M,” of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 2A.
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Figure 10-1. Cache Structure of the Pentium 4 and Intel Xeon Processors
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Figure 10-2. Cache Structure of the Intel Core i7 Processors

Figure 10-2 shows the cache arrangement of Intel Core i7 processor.

Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors

Cache or Buffer Characteristics

Trace Cache' = Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 12 Kuops, 8-way set associative.

= Intel Core i7, Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo,
Pentium M processor: not implemented.

= P6 family and Pentium processors: not implemented.

L1 Instruction Cache | = Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): not implemented.

= Intel Core i7 processor: 32-KByte, 4-way set associative.

= Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M
processor: 32-KByte, 8-way set associative.

= P6 family and Pentium processors: 8- or 16-KByte, 4-way set associative,
32-byte cache line size; 2-way set associative for earlier Pentium
processors.
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Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer

Characteristics

L1 Data Cache

Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 8-KByte, 4-way set associative, 64-byte cache line
size.

Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 16-KByte, 8-way set associative, 64-byte cache line
size.

Intel Atom processors: 24-KByte, 6-way set associative, 64-byte cache
line size.

Intel Core i7, Intel Core 2 Duo, Intel Core Duo, Intel Core Solo, Pentium M
and Intel Xeon processors: 32-KByte, 8-way set associative, 64-byte
cache line size.

P6 family processors: 16-KByte, 4-way set associative, 32-byte cache
line size; 8-KBytes, 2-way set associative for earlier P6 family
processors.

Pentium processors: 16-KByte, 4-way set associative, 32-byte cache line
size; 8-KByte, 2-way set associative for earlier Pentium processors.

L2 Unified Cache

Intel Core 2 Duo and Intel Xeon processors: up to 4-MByte (or 4MBx2 in
quadcore processors), 16-way set associative, 64-byte cache line size.
Intel Core 2 Duo and Intel Xeon processors: up to 6-MByte (or 6MBxZ2 in
quadcore processors), 24-way set associative, 64-byte cache line size.
Intel Core i7 processor: 256KBbyte, 8-way set associative, 64-byte cache
line size.

Intel Atom processors: 512-KByte, 8-way set associative, 64-byte cache
line size.

Intel Core Duo, Intel Core Solo processors: 2-MByte, 8-way set
associative, 64-byte cache line size

Pentium 4 and Intel Xeon processors: 256, 512, 1024, or 2048-KByte, 8-
way set associative, 64-byte cache line size, 128-byte sector size.
Pentium M processor: 1 or 2-MByte, 8-way set associative, 64-byte
cache line size.

P6 family processors: 128-KByte, 256-KByte, 512-KByte, 1-MByte, or 2-
MByte, 4-way set associative, 32-byte cache line size.

Pentium processor (external optional): System specific, typically 256- or
512-KByte, 4-way set associative, 32-byte cache line size.

L3 Unified Cache

Intel Xeon processors: 512-KByte, 1-MByte, 2-MByte, or 4-MByte, 8-way
set associative, 64-byte cache line size, 128-byte sector size.

Intel Core i7 processor: Up to 8MByte, 16-way set associative, 64-byte
cache line size.
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Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer

Characteristics

Instruction TLB
(4-KByte Pages)

Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 128 entries, 4-way set associative.

Intel Atom processors: 32-entries, fully associative.

Intel Core i7 processor: 64-entries per thread (128-entries per core), 4-
way set associative.

Intel Core 2 Duo, Intel Core Duo, Intel Core Solo processors, Pentium M
processor: 128 entries, 4-way set associative.

P6 family processors: 32 entries, 4-way set associative.

Pentium processor: 32 entries, 4-way set associative; fully set
associative for Pentium processors with MMX technology.

Data TLB (4-KByte
Pages)

Intel Core i7 processor, DTLBO: 64-entries, 4-way set associative.

Intel Core 2 Duo processors: DTLBO, 16 entries, DTLB1, 256 entries, 4
ways.

Intel Atom processors: 16-entry-per-thread micro-TLB, fully associative;
64-entry DTLB, 4-way set associative; 16-entry PDE cache, fully
associative.

Pentium 4 and Intel Xeon processors (Based on Intel NetBurst
microarchitecture): 64 entry, fully set associative, shared with large page
DTLB.

Intel Core Duo, Intel Core Solo processors, Pentium M processor: 128
entries, 4-way set associative.

Pentium and P6 family processors: 64 entries, 4-way set associative;
fully set, associative for Pentium processors with MMX technology.

Instruction TLB
(Large Pages)

Intel Core i7 processor: 7-entries per thread, fully associative.

Intel Core 2 Duo processors: 4 entries, 4 ways.

Pentium 4 and Intel Xeon processors: large pages are fragmented.
Intel Core Duo, Intel Core Solo, Pentium M processor: 2 entries, fully
associative.

P6 family processors: 2 entries, fully associative.

Pentium processor: Uses same TLB as used for 4-KByte pages.

Data TLB (Large
Pages)

Intel Core i7 processor, DTLBO: 32-entries, 4-way set associative.
Intel Core 2 Duo processors: DTLBO, 16 entries, DTLB1, 32 entries, 4
ways.

Intel Atom processors: 8 entries, 4-way set associative.

Pentium 4 and Intel Xeon processors: 64 entries, fully set associative;
shared with small page data TLBs.

Intel Core Duo, Intel Core Solo, Pentium M processor: 8 entries, fully
associative.

P6 family processors: 8 entries, 4-way set associative.

Pentium processor: 8 entries, 4-way set associative; uses same TLB as
used for 4-KByte pages in Pentium processors with MMX technology.

Second-level Unified
TLB (4-KByte
Pages)

Intel Core i7 processor, STLB: 512-entries, 4-way set associative.
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Table 10-1. Characteristics of the Caches, TLBs, Store Buffer, and
Write Combining Buffer in Intel 64 and IA-32 Processors (Contd.)

Cache or Buffer Characteristics

Store Buffer

Intel Core i7 processors: 32entries.

Intel Core 2 Duo processors: 20 entries.

Intel Atom processors: 8 entries, used for both WC and store buffers.
Pentium 4 and Intel Xeon processors: 24 entries.

Pentium M processor: 16 entries.

P6 family processors: 12 entries.

Pentium processor: 2 buffers, 1 entry each (Pentium processors with
MMX technology have 4 buffers for 4 entries).

Write Combining * Intel Core 2 Duo processors: 8 entries.

(WC) Buffer = Intel Atom processors: 8 entries, used for both WC and store buffers.
= Pentium 4 and Intel Xeon processors: 6 or 8 entries.
* Intel Core Duo, Intel Core Solo, Pentium M processors: 6 entries.
= P6 family processors: 4 entries.

NOTES:

1 Introduced to the IA-32 architecture in the Pentium 4 and Intel Xeon processors.

Intel 64 and IA-32 processors may implement four types of caches: the trace cache,
the level 1 (L1) cache, the level 2 (L2) cache, and the level 3 (L3) cache. See
Figure 10-1. Cache availability is described below:

Intel Core i7 processor Family — The L1 cache is divided into two sections:
one section is dedicated to caching instructions (pre-decoded instructions) and
the other caches data. The L2 cache is a unified data and instruction cache. Each
processor core has its own L1 and L2. The L3 cache is an inclusive, unified data
and instruction cache, shared by all processor cores inside a physical package. No
trace cache is implemented.

Intel Core 2 processor and Intel Xeon processor Family based on Intel
Core microarchitecture — The L1 cache is divided into two sections: one
section is dedicated to caching instructions (pre-decoded instructions) and the
other caches data. The L2 cache is a unified data and instruction cache located on
the processor chip; it is shared between two processor cores in a dual-core
processor implementation. Quad-core processors have two L2, each shared by
two processor cores. No trace cache is implemented.

Intel Atom processor — The L1 cache is divided into two sections: one section
is dedicated to caching instructions (pre-decoded instructions) and the other
caches data. The L2 cache is a unified data and instruction cache is located on the
processor chip. No trace cache is implemented.

Intel Core Solo and Intel Core Duo processors — The L1 cache is divided into
two sections: one section is dedicated to caching instructions (pre-decoded
instructions) and the other caches data. The L2 cache is a unified data and
instruction cache located on the processor chip. It is shared between two
processor cores in a dual-core processor implementation. No trace cache is
implemented.
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®* Pentium 4 and Intel Xeon processors Based on Intel NetBurst microar-
chitecture — The trace cache caches decoded instructions (nops) from the
instruction decoder and the L1 cache contains data. The L2 and L3 caches are
unified data and instruction caches located on the processor chip. Dualcore
processors have two L2, one in each processor core. Note that the L3 cache is
only implemented on some Intel Xeon processors.

* P6 family processors — The L1 cache is divided into two sections: one
dedicated to caching instructions (pre-decoded instructions) and the other to
caching data. The L2 cache is a unified data and instruction cache located on the
processor chip. P6 family processors do not implement a trace cache.

®* Pentium processors — The L1 cache has the same structure as on P6 family
processors. There is no trace cache. The L2 cache is a unified data and instruction
cache external to the processor chip on earlier Pentium processors and
implemented on the processor chip in later Pentium processors. For Pentium
processors where the L2 cache is external to the processor, access to the cache is
through the system bus.

For Intel Core i7 processors and processors based on Intel Core, Intel Atom, and Intel
NetBurst microarchitectures, Intel Core Duo, Intel Core Solo and Pentium M proces-
sors, the cache lines for the L1 and L2 caches (and L3 caches if supported) are 64
bytes wide. The processor always reads a cache line from system memory beginning
on a 64-byte boundary. (A 64-byte aligned cache line begins at an address with its 6
least-significant bits clear.) A cache line can be filled from memory with a 8-transfer
burst transaction. The caches do not support partially-filled cache lines, so caching
even a single doubleword requires caching an entire line.

The L1 and L2 cache lines in the P6 family and Pentium processors are 32 bytes wide,
with cache line reads from system memory beginning on a 32-byte boundary (5
least-significant bits of a memory address clear.) A cache line can be filled from
memory with a 4-transfer burst transaction. Partially-filled cache lines are not
supported.

The trace cache in processors based on Intel NetBurst microarchitecture is available
in all execution modes: protected mode, system management mode (SMM), and
real-address mode. The L1,L2, and L3 caches are also available in all execution
modes; however, use of them must be handled carefully in SMM (see Section 25.4.2,
“"SMRAM Caching”).

The TLBs store the most recently used page-directory and page-table entries. They
speed up memory accesses when paging is enabled by reducing the number of
memory accesses that are required to read the page tables stored in system
memory. The TLBs are divided into four groups: instruction TLBs for 4-KByte pages,
data TLBs for 4-KByte pages; instruction TLBs for large pages (2-MByte or 4-MByte
pages), and data TLBs for large pages. The TLBs are normally active only in protected
mode with paging enabled. When paging is disabled or the processor is in real-
address mode, the TLBs maintain their contents until explicitly or implicitly flushed
(see Section 10.9, “Invalidating the Translation Lookaside Buffers (TLBs)").
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Processors based on Intel Core microarchitectures implement one level of instruction
TLB and two levels of data TLB. Intel Core i7 processor provides a second-level
unified TLB.

The store buffer is associated with the processors instruction execution units. It
allows writes to system memory and/or the internal caches to be saved and in some
cases combined to optimize the processor’s bus accesses. The store buffer is always
enabled in all execution modes.

The processor’s caches are for the most part transparent to software. When enabled,
instructions and data flow through these caches without the need for explicit soft-
ware control. However, knowledge of the behavior of these caches may be useful in
optimizing software performance. For example, knowledge of cache dimensions and
replacement algorithms gives an indication of how large of a data structure can be
operated on at once without causing cache thrashing.

In multiprocessor systems, maintenance of cache consistency may, in rare circum-
stances, require intervention by system software. For these rare cases, the processor
provides privileged cache control instructions for use in flushing caches and forcing
memory ordering.

The Pentium lll, Pentium 4, and Intel Xeon processors introduced several instructions
that software can use to improve the performance of the L1, L2, and L3 caches,
including the PREFETCHA and CLFLUSH instructions and the non-temporal move
instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD). The use of
these instructions are discussed in Section 10.5.5, "Cache Management Instruc-
tions.”

10.2  CACHING TERMINOLOGY

IA-32 processors (beginning with the Pentium processor) and Intel 64 processors use
the MESI (modified, exclusive, shared, invalid) cache protocol to maintain consis-
tency with internal caches and caches in other processors (see Section 10.4, “"Cache
Control Protocol”).

When the processor recognizes that an operand being read from memory is cache-
able, the processor reads an entire cache line into the appropriate cache (L1, L2, L3,
or all). This operation is called a cache line fill. If the memory location containing
that operand is still cached the next time the processor attempts to access the
operand, the processor can read the operand from the cache instead of going back to
memory. This operation is called a cache hit.

When the processor attempts to write an operand to a cacheable area of memory, it
first checks if a cache line for that memory location exists in the cache. If a valid
cache line does exist, the processor (depending on the write policy currently in force)
can write the operand into the cache instead of writing it out to system memory. This
operation is called a write hit. If a write misses the cache (that is, a valid cache line
is not present for area of memory being written to), the processor performs a cache
line fill, write allocation. Then it writes the operand into the cache line and
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(depending on the write policy currently in force) can also write it out to memory. If
the operand is to be written out to memory, it is written first into the store buffer, and
then written from the store buffer to memory when the system bus is available.
(Note that for the Pentium processor, write misses do not result in a cache line fill;
they always result in a write to memory. For this processor, only read misses result in
cache line fills.)

When operating in an MP system, IA-32 processors (beginning with the Intel486
processor) and Intel 64 processors have the ability to snoop other processor’s
accesses to system memory and to their internal caches. They use this snooping
ability to keep their internal caches consistent both with system memory and with
the caches in other processors on the bus. For example, in the Pentium and P6 family
processors, if through snooping one processor detects that another processor
intends to write to a memory location that it currently has cached in shared state,
the snooping processor will invalidate its cache line forcing it to perform a cache line
fill the next time it accesses the same memory location.

Beginning with the P6 family processors, if a processor detects (through snooping)
that another processor is trying to access a memory location that it has modified in
its cache, but has not yet written back to system memory, the snooping processor
will signal the other processor (by means of the HITM# signal) that the cache line is
held in modified state and will preform an implicit write-back of the modified data.
The implicit write-back is transferred directly to the initial requesting processor and
snhooped by the memory controller to assure that system memory has been updated.
Here, the processor with the valid data may pass the data to the other processors
without actually writing it to system memory; however, it is the responsibility of the
memory controller to snoop this operation and update memory.

10.3 METHODS OF CACHING AVAILABLE

The processor allows any area of system memory to be cached in the L1, L2, and L3
caches. In individual pages or regions of system memory, it allows the type of
caching (also called memory type) to be specified (see Section 10.5). Memory types
currently defined for the Intel 64 and IA-32 architectures are (see Table 10-2):

®* Strong Uncacheable (UC) —System memory locations are not cached. All
reads and writes appear on the system bus and are executed in program order
without reordering. No speculative memory accesses, page-table walks, or
prefetches of speculated branch targets are made. This type of cache-control is
useful for memory-mapped I/O devices. When used with normal RAM, it greatly
reduces processor performance.

NOTE

The behavior of FP and SSE/SSE2 operations on operands in UC
memory is implementation dependent. In some implementations,
accesses to UC memory may occur more than once. To ensure
predictable behavior, use loads and stores of general purpose
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registers to access UC memory that may have read or write side

effects.
Table 10-2. Memory Types and Their Properties
Memory Type and Cacheable | Writeback | Allows Memory Ordering Model
Mnemonic Cacheable | Speculative
Reads
Strong Uncacheable | No No No Strong Ordering
(UQ
Uncacheable (UC-) No No No Strong Ordering. Can only be
selected through the PAT. Can
be overridden by WC in MTRRs.
Write Combining (WC) | No No Yes Weak Ordering. Available by
programming MTRRs or by
selecting it through the PAT.
Write Through (WT) | Yes No Yes Speculative Processor Ordering.
Write Back (WB) Yes Yes Yes Speculative Processor Ordering.
Write Protected (WP) | Yes for No Yes Speculative Processor Ordering.
reads; no for Available by programming
writes MTRRs.

Uncacheable (UC-) — Has same characteristics as the strong uncacheable (UC)
memory type, except that this memory type can be overridden by programming
the MTRRs for the WC memory type. This memory type is available in processor
families starting from the Pentium Ill processors and can only be selected through
the PAT.

Write Combining (WC) — System memory locations are not cached (as with
uncacheable memory) and coherency is not enforced by the processor’s bus
coherency protocol. Speculative reads are allowed. Writes may be delayed and
combined in the write combining buffer (WC buffer) to reduce memory accesses.
If the WC buffer is partially filled, the writes may be delayed until the next
occurrence of a serializing event; such as, an SFENCE or MFENCE instruction,
CPUID execution, a read or write to uncached memory, an interrupt occurrence,
or a LOCK instruction execution. This type of cache-control is appropriate for
video frame buffers, where the order of writes is unimportant as long as the
writes update memory so they can be seen on the graphics display. See Section
10.3.1, “Buffering of Write Combining Memory Locations,” for more information
about caching the WC memory type. This memory type is available in the
Pentium Pro and Pentium II processors by programming the MTRRs; or in
processor families starting from the Pentium Ill processors by programming the
MTRRs or by selecting it through the PAT.

Write-through (WT) — Writes and reads to and from system memory are
cached. Reads come from cache lines on cache hits; read misses cause cache
fills. Speculative reads are allowed. All writes are written to a cache line (when
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possible) and through to system memory. When writing through to memory,
invalid cache lines are never filled, and valid cache lines are either filled or inval-
idated. Write combining is allowed. This type of cache-control is appropriate for
frame buffers or when there are devices on the system bus that access system
memory, but do not perform snooping of memory accesses. It enforces
coherency between caches in the processors and system memory.

Write-back (WB) — Writes and reads to and from system memory are cached.
Reads come from cache lines on cache hits; read misses cause cache fills.
Speculative reads are allowed. Write misses cause cache line fills (in processor
families starting with the P6 family processors), and writes are performed
entirely in the cache, when possible. Write combining is allowed. The write-back
memory type reduces bus traffic by eliminating many unnecessary writes to
system memory. Writes to a cache line are not immediately forwarded to system
memory; instead, they are accumulated in the cache. The modified cache lines
are written to system memory later, when a write-back operation is performed.
Write-back operations are triggered when cache lines need to be deallocated,
such as when new cache lines are being allocated in a cache that is already full.
They also are triggered by the mechanisms used to maintain cache consistency.
This type of cache-control provides the best performance, but it requires that all
devices that access system memory on the system bus be able to snoop memory
accesses to insure system memory and cache coherency.

Write protected (WP) — Reads come from cache lines when possible, and read
misses cause cache fills. Writes are propagated to the system bus and cause
corresponding cache lines on all processors on the bus to be invalidated.
Speculative reads are allowed. This memory type is available in processor
families starting from the P6 family processors by programming the MTRRs (see
Table 10-6).

Table 10-3 shows which of these caching methods are available in the Pentium, P6
Family, Pentium 4, and Intel Xeon processors.

Table 10-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors

Memory Type Intel Core 2 Duo, Intel Atom, Intel P6 Family Pentium
Core Duo, Pentium M, Pentium 4 Processors Processor
and Intel Xeon Processors

Strong Uncacheable (UC) | Yes Yes Yes

Uncacheable (UC-) Yes Yes* No

Write Combining (WC) Yes Yes No

Write Through (WT) Yes Yes Yes

Write Back (WB) Yes Yes Yes

Write Protected (WP) Yes Yes No
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Table 10-3. Methods of Caching Available in Intel Core 2 Duo, Intel Atom, Intel Core
Duo, Pentium M, Pentium 4, Intel Xeon, P6 Family, and Pentium Processors (Contd.)

Memory Type Intel Core 2 Duo, Intel Atom, Intel P6 Family Pentium
Core Duo, Pentium M, Pentium 4 Processors Processor
and Intel Xeon Processors

NOTE:
* Introduced in the Pentium lIl processor; not available in the Pentium Pro or Pentium II processors

10.3.1 Buffering of Write Combining Memory Locations

Writes to the WC memory type are not cached in the typical sense of the word
cached. They are retained in an internal write combining buffer (WC buffer) that is
separate from the internal L1, L2, and L3 caches and the store buffer. The WC buffer
is not snooped and thus does not provide data coherency. Buffering of writes to WC
memory is done to allow software a small window of time to supply more modified
data to the WC buffer while remaining as non-intrusive to software as possible. The
buffering of writes to WC memory also causes data to be collapsed; that is, multiple
writes to the same memory location will leave the last data written in the location and
the other writes will be lost.

The size and structure of the WC buffer is not architecturally defined. For the Intel
Core 2 Duo, Intel Atom, Intel Core Duo, Pentium M, Pentium 4 and Intel Xeon proces-
sors; the WC buffer is made up of several 64-byte WC buffers. For the P6 family
processors, the WC buffer is made up of several 32-byte WC buffers.

When software begins writing to WC memory, the processor begins filling the WC
buffers one at a time. When one or more WC buffers has been filled, the processor
has the option of evicting the buffers to system memory. The protocol for evicting the
WC buffers is implementation dependent and should not be relied on by software for
system memory coherency. When using the WC memory type, software must be
sensitive to the fact that the writing of data to system memory is being delayed and
must deliberately empty the WC buffers when system memory coherency is
required.

Once the processor has started to evict data from the WC buffer into system
memory, it will make a bus-transaction style decision based on how much of the
buffer contains valid data. If the buffer is full (for example, all bytes are valid), the
processor will execute a burst-write transaction on the bus. This results in all 32
bytes (P6 family processors) or 64 bytes (Pentium 4 and more recent processor)
being transmitted on the data bus in a single burst transaction. If one or more of the
WC buffer’s bytes are invalid (for example, have not been written by software), the
processor will transmit the data to memory using “partial write” transactions (one
chunk at a time, where a “chunk” is 8 bytes).

This will result in a maximum of 4 partial write transactions (for P6 family processors)
or 8 partial write transactions (for the Pentium 4 and more recent processors) for one
WC buffer of data sent to memory.
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The WC memory type is weakly ordered by definition. Once the eviction of a WC
buffer has started, the data is subject to the weak ordering semantics of its defini-
tion. Ordering is not maintained between the successive allocation/deallocation of
WC buffers (for example, writes to WC buffer 1 followed by writes to WC buffer 2 may
appear as buffer 2 followed by buffer 1 on the system bus). When a WC buffer is
evicted to memory as partial writes there is no guaranteed ordering between succes-
sive partial writes (for example, a partial write for chunk 2 may appear on the bus
before the partial write for chunk 1 or vice versa).

The only elements of WC propagation to the system bus that are guaranteed are
those provided by transaction atomicity. For example, with a P6 family processor, a
completely full WC buffer will always be propagated as a single 32-bit burst transac-
tion using any chunk order. In a WC buffer eviction where data will be evicted as
partials, all data contained in the same chunk (0 mod 8 aligned) will be propagated
simultaneously. Likewise, for more recent processors starting with those based on
Intel NetBurst microarchitectures, a full WC buffer will always be propagated as a
single burst transactions, using any chunk order within a transaction. For partial
buffer propagations, all data contained in the same chunk will be propagated simul-
taneously.

10.3.2 Choosing a Memory Type

The simplest system memory model does not use memory-mapped I/0O with read or
write side effects, does not include a frame buffer, and uses the write-back memory
type for all memory. An I/O agent can perform direct memory access (DMA) to write-
back memory and the cache protocol maintains cache coherency.

A system can use strong uncacheable memory for other memory-mapped I/0, and
should always use strong uncacheable memory for memory-mapped I/O with read
side effects.

Dual-ported memory can be considered a write side effect, making relatively prompt
writes desirable, because those writes cannot be observed at the other port until they
reach the memory agent. A system can use strong uncacheable, uncacheable, write-
through, or write-combining memory for frame buffers or dual-ported memory that
contains pixel values displayed on a screen. Frame buffer memory is typically large (a
few megabytes) and is usually written more than it is read by the processor. Using
strong uncacheable memory for a frame buffer generates very large amounts of bus
traffic, because operations on the entire buffer are implemented using partial writes
rather than line writes. Using write-through memory for a frame buffer can displace
almost all other useful cached lines in the processor's L2 and L3 caches and L1 data
cache. Therefore, systems should use write-combining memory for frame buffers
whenever possible.

Software can use page-level cache control, to assign appropriate effective memory
types when software will not access data structures in ways that benefit from write-
back caching. For example, software may read a large data structure once and not
access the structure again until the structure is rewritten by another agent. Such a
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large data structure should be marked as uncacheable, or reading it will evict cached
lines that the processor will be referencing again.

A similar example would be a write-only data structure that is written to (to export
the data to another agent), but never read by software. Such a structure can be
marked as uncacheable, because software never reads the values that it writes
(though as uncacheable memory, it will be written using partial writes, while as
write-back memory, it will be written using line writes, which may not occur until the
other agent reads the structure and triggers implicit write-backs).

On the Pentium lll, Pentium 4, and more recent processors, new instructions are
provided that give software greater control over the caching, prefetching, and the
write-back characteristics of data. These instructions allow software to use weakly
ordered or processor ordered memory types to improve processor performance, but
when necessary to force strong ordering on memory reads and/or writes. They also
allow software greater control over the caching of data. For a description of these
instructions and there intended use, see Section 10.5.5, "Cache Management
Instructions.”

10.3.3 Code Fetches in Uncacheable Memory

Programs may execute code from uncacheable (UC) memory, but the implications
are different from accessing data in UC memory. When doing code fetches, the
processor never transitions from cacheable code to UC code speculatively. It also
never speculatively fetches branch targets that result in UC code.

The processor may fetch the same UC cache line multiple times in order to decode an
instruction once. It may decode consecutive UC instructions in a cacheline without
fetching between each instruction. It may also fetch additional cachelines from the
same or a consecutive 4-KByte page in order to decode one non-speculative UC
instruction (this can be true even when the instruction is contained fully in one line).

Because of the above and because cacheline sizes may change in future processors,
software should avoid placing memory-mapped I/O with read side effects in the
same page or in a subsequent page used to execute UC code.

10.4 CACHE CONTROL PROTOCOL

The following section describes the cache control protocol currently defined for the
Intel 64 and IA-32 architectures.

In the L1 data cache and in the L2/L3 unified caches, the MESI (modified, exclusive,
shared, invalid) cache protocol maintains consistency with caches of other proces-
sors. The L1 data cache and the L2/L3 unified caches have two MESI status flags per
cache line. Each line can be marked as being in one of the states defined in Table
10-4. In general, the operation of the MESI protocol is transparent to programs.
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Table 10-4. MESI Cache Line States

Cache Line State M (Modified) € (Exclusive) S (Shared) I (Invalid)

This cache line is valid? | Yes Yes Yes No

The memory copy is... | Out of date Valid Valid —

Copies exist in caches | No No Maybe Maybe

of other processors?

A write to this line ... Does not go to | Does not go to | Causes the Goes directly to

the system bus. | the system bus. | processor to gain the system bus.

exclusive
ownership of the
line.

The L1 instruction cache in P6 family processors implements only the “SI” part of the
MESI protocol, because the instruction cache is not writable. The instruction cache
monitors changes in the data cache to maintain consistency between the caches
when instructions are modified. See Section 10.6, “Self-Modifying Code,” for more
information on the implications of caching instructions.

10.5 CACHE CONTROL

The Intel 64 and IA-32 architectures provide a variety of mechanisms for controlling
the caching of data and instructions and for controlling the ordering of reads and
writes between the processor, the caches, and memory. These mechanisms can be
divided into two groups:

®* Cache control registers and bits — The Intel 64 and IA-32 architectures
define several dedicated registers and various bits within control registers and
page- and directory-table entries that control the caching system memory
locations in the L1, L2, and L3 caches. These mechanisms control the caching of
virtual memory pages and of regions of physical memory.

® Cache control and memory ordering instructions — The Intel 64 and IA-32
architectures provide several instructions that control the caching of data, the
ordering of memory reads and writes, and the prefetching of data. These instruc-
tions allow software to control the caching of specific data structures, to control
memory coherency for specific locations in memory, and to force strong memory
ordering at specific locations in a program.

The following sections describe these two groups of cache control mechanisms.
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10.5.1 Cache Control Registers and Bits

Figure 10-3 depicts cache-control mechanisms in IA-32 processors. Other than for
the matter of memory address space, these work the same in Intel 64 processors.

The Intel 64 and IA-32 architectures provide the following cache-control registers
and bits for use in enabling or restricting caching to various pages or regions in
memory:

CD flag, bit 30 of control register CRO — Controls caching of system memory
locations (see Section 2.5, “"Control Registers”). If the CD flag is clear, caching is
enabled for the whole of system memory, but may be restricted for individual
pages or regions of memory by other cache-control mechanisms. When the CD
flag is set, caching is restricted in the processor’s caches (cache hierarchy) for
the P6 and more recent processor families and prevented for the Pentium
processor (see note below). With the CD flag set, however, the caches will still
respond to snoop traffic. Caches should be explicitly flushed to insure memory
coherency. For highest processor performance, both the CD and the NW flags in
control register CRO should be cleared. Table 10-5 shows the interaction of the
CD and NW flags.

The effect of setting the CD flag is somewhat different for processor families
starting with P6 family than the Pentium processor (see Table 10-5). To insure
memory coherency after the CD flag is set, the caches should be explicitly
flushed (see Section 10.5.3, “"Preventing Caching”). Setting the CD flag for the
P6 and more recent processor families modify cache line fill and update
behaviour. Also, setting the CD flag on these processors do not force strict
ordering of memory accesses unless the MTRRs are disabled and/or all memory
is referenced as uncached (see Section 7.2.5, “Strengthening or Weakening the
Memory-Ordering Model”).
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CR4

CR3

=)
C
D

T >

Enables global pages
designated with G flag

Control caching of
page directory

Page-Directory or

CRO Page-Table Entry
PY PP
D|W 7|7 |D|T

CD and NW Flags
control overall caching
of system memory

PCD and PWT flags
control page-level
caching

G flag controls page-
level flushing of TLBs

Store Buffer

TLBs

Physical Memory

7777777777 ~—_

FFFFFFFFH?

PAT#

PAT controls caching
of virtual memory
pages

MTRRs3

MTRRs control caching
of selected regions of
0 physical memory

1. G flag only available in P6 and later processor families
2. The maximum physical address size is reported by CPUID leaf
function 80000008H. The maximum physical address size of
FFFFFFFFFH applies only If 36-bit physical addressing is used.
3. MTRRs available only in P6 and later processor families;
similar control available in Pentium processor with the KEN#
and WB/WT# pins.
4. PAT available only in Pentium Ill and later processor families.
5. L3 in processors based on Intel NetBurst microarchitecture can
be disabled using IA32_MISC_ENABLES MSR.

Figure 10-3. Cache-Control Registers and Bits Available in Intel 64 and IA-32
Processors
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Table 10-5. Cache Operating Modes

CD | Nw Caching and Read/Write Policy L1 L2/L3!
0 0 | Normal Cache Mode. Highest performance cache operation.
- Read hits access the cache; read misses may cause replacement. | Yes Yes
« Write hits update the cache. Yes Yes
= Only writes to shared lines and write misses update system Yes Yes
memory.
= Write misses cause cache line fills. Yes Yes
= Write hits can change shared lines to modified under control of Yes
the MTRRs and with associated read invalidation cycle.
= (Pentium processor only.) Write misses do not cause cache line Yes
fills.
= (Pentium processor only.) Write hits can change shared lines to Yes
exclusive under control of WB/WT#.
= Invalidation is allowed. Yes Yes
= External snoop traffic is supported. Yes Yes
0 1 | Invalid setting.
Generates a general-protection exception (#GP) with an error code NA NA
of 0.
1 0 | No-fill Cache Mode. Memory coherency is maintained.>
= (Pentium 4 and later processor families.) State of processor after | Yes Yes
a power up or reset.
= Read hits access the cache; read misses do not cause Yes Yes
replacement (see Pentium 4 and Intel Xeon processors reference
below).
= Write hits update the cache. Yes Yes
= Only writes to shared lines and write misses update system Yes Yes
memory.
= Write misses access memory. Yes Yes
» Write hits can change shared lines to exclusive under control of Yes Yes
the MTRRs and with associated read invalidation cycle.
= (Pentium processor only.) Write hits can change shared lines to Yes
exclusive under control of the WB/WT#.
1 0 |= (P6 and later processor families only.) Strict memory ordering is Yes Yes
not enforced unless the MTRRs are disabled and/or all memory is
referenced as uncached (see Section 7.2.4., “Strengthening or
Weakening the Memory Ordering Model").
= Invalidation is allowed.
L Yes Yes
= External snoop traffic is supported. Ves Ves
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Table 10-5. Cache Operating Modes

CD | Nw Caching and Read/Write Policy L1 L2/L3!
1 | 1 |Memory coherency is not maintained. 3
= (P& family and Pentium processors.) State of the processor after | YeS Yes
a power up or reset.
= Read hits access the cache; read misses do not cause Yes Yes
replacement.
= Write hits update the cache and change exclusive lines to Yes Yes
modified.
= Shared lines remain shared after write hit. Yes Yes
= Write misses access memory. Yes Yes
= Invalidation is inhibited when snooping; but is allowed with INVD | ves Yes
and WBINVD instructions.
= External snoop traffic is supported. No Yes
NOTES:

1. The L2/L3 column in this table is definitive for the Pentium 4, Intel Xeon, and P6 family proces-
sors. It is intended to represent what could be implemented in a system based on a Pentium pro-
cessor with an external, platform specific, write-back L2 cache.

2. The Pentium 4 and more recent processor families do not support this mode; setting the CD and
NW bits to 1 selects the no-fill cache mode.

3. Not supported In Intel Atom processors. If CD = 1 in an Intel Atom processor, caching is disabled.

NW flag, bit 29 of control register CRO — Controls the write policy for system
memory locations (see Section 2.5, “"Control Registers”). If the NW and CD flags
are clear, write-back is enabled for the whole of system memory, but may be
restricted for individual pages or regions of memory by other cache-control
mechanisms. Table 10-5 shows how the other combinations of CD and NW flags
affects caching.

NOTES

For the Pentium 4 and Intel Xeon processors, the NW flag is a don't
care flag; that is, when the CD flag is set, the processor uses the no-
fill cache mode, regardless of the setting of the NW flag.

For Intel Atom processors, the NW flag is a don’t care flag; that is,
when the CD flag is set, the processor disables caching, regardless of
the setting of the NW flag.

For the Pentium processor, when the L1 cache is disabled (the CD and
NW flags in control register CRO are set), external snoops are
accepted in DP (dual-processor) systems and inhibited in unipro-
cessor systems.

When snoops are inhibited, address parity is not checked and

APCHK# is not asserted for a corrupt address; however, when snoops
are accepted, address parity is checked and APCHK# is asserted for
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corrupt addresses.

PCD flag in the page-directory and page-table entries — Controls caching
for individual page tables and pages, respectively (see Section 3.7.6, “Page-
Directory and Page-Table Entries”). This flag only has effect when paging is
enabled and the CD flag in control register CRO is clear. The PCD flag enables
caching of the page table or page when clear and prevents caching when set.

PWT flag in the page-directory and page-table entries — Controls the write
policy for individual page tables and pages, respectively (see Section 3.7.6,
“Page-Directory and Page-Table Entries”). This flag only has effect when paging is
enabled and the NW flag in control register CRO is clear. The PWT flag enables
write-back caching of the page table or page when clear and write-through
caching when set.

PCD and PWT flags in control register CR3 — Control the global caching and
write policy for the page directory (see Section 2.5, "Control Registers”). The PCD
flag enables caching of the page directory when clear and prevents caching when
set. The PWT flag enables write-back caching of the page directory when clear
and write-through caching when set. These flags do not affect the caching and
write policy for individual page tables. These flags only have effect when paging
is enabled and the CD flag in control register CRO is clear.

G (global) flag in the page-directory and page-table entries (introduced
to the IA-32 architecture in the P6 family processors) — Controls the
flushing of TLB entries for individual pages. See Section 3.12, “Translation
Lookaside Buffers (TLBs),” for more information about this flag.

PGE (page global enable) flag in control register CR4 — Enables the estab-
lishment of global pages with the G flag. See Section 3.12, “Translation Lookaside
Buffers (TLBs),” for more information about this flag.

Memory type range registers (MTRRs) (introduced in P6 family
processors) — Control the type of caching used in specific regions of physical
memory. Any of the caching types described in Section 10.3, "Methods of Caching
Available,” can be selected. See Section 10.11, "Memory Type Range Registers
(MTRRSs),” for a detailed description of the MTRRs.

Page Attribute Table (PAT) MSR (introduced in the Pentium lll processor)
— Extends the memory typing capabilities of the processor to permit memory
types to be assighed on a page-by-page basis (see Section 10.12, “Page Attribute
Table (PAT)").

Third-Level Cache Disable flag, bit 6 of the IA32_MISC_ENABLES MSR
(Available only in processors based on Intel NetBurst microarchitecture)
— Allows the L3 cache to be disabled and enabled, independently of the L1 and
L2 caches.

KEN# and WB/WT# pins (Pentium processor) — Allow external hardware to
control the caching method used for specific areas of memory. They perform
similar (but not identical) functions to the MTRRs in the P6 family processors.
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®* PCD and PWT pins (Pentium processor) — These pins (which are associated
with the PCD and PWT flags in control register CR3 and in the page-directory and
page-table entries) permit caching in an external L2 cache to be controlled on a
page-by-page basis, consistent with the control exercised on the L1 cache of
these processors. The P6 and more recent processor families do not provide
these pins because the L2 cache in internal to the chip package.

10.5.2 Precedence of Cache Controls

The cache control flags and MTRRs operate hierarchically for restricting caching. That
is, if the CD flag is set, caching is prevented globally (see Table 10-5). If the CD flag
is clear, the page-level cache control flags and/or the MTRRs can be used to restrict
caching. If there is an overlap of page-level and MTRR caching controls, the mecha-
nism that prevents caching has precedence. For example, if an MTRR makes a region
of system memory uncacheable, a page-level caching control cannot be used to
enable caching for a page in that region. The converse is also true; that is, if a page-
level caching control designates a page as uncacheable, an MTRR cannot be used to
make the page cacheable.

In cases where there is a overlap in the assignment of the write-back and write-
through caching policies to a page and a region of memory, the write-through policy
takes precedence. The write-combining policy (which can only be assigned through
an MTRR or the PAT) takes precedence over either write-through or write-back.

The selection of memory types at the page level varies depending on whether PAT is
being used to select memory types for pages, as described in the following sections.

On processors based on Intel NetBurst microarchitecture, the third-level cache can
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. Using IA32_MISC_ENALBES[bit
6] takes precedence over the CD flag, MTRRs, and PAT for the L3 cache in those
processors. That is, when the third-level cache disable flag is set (cache disabled),
the other cache controls have no affect on the L3 cache; when the flag is clear
(enabled), the cache controls have the same affect on the L3 cache as they have on
the L1 and L2 caches.

IA32_MISC_ENALBES[bit 6] is not supported in Intel Core i7 processors, nor proces-
sors based on Intel Core, and Intel Atom microarchitectures.

10.5.2.1 Selecting Memory Types for Pentium Pro and Pentium Il
Processors

The Pentium Pro and Pentium II processors do not support the PAT. Here, the effec-
tive memory type for a page is selected with the MTRRs and the PCD and PWT bits in
the page-table or page-directory entry for the page. Table 10-6 describes the
mapping of MTRR memory types and page-level caching attributes to effective
memory types, when normal caching is in effect (the CD and NW flags in control
register CRO are clear). Combinations that appear in gray are implementation-
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defined for the Pentium Pro and Pentium II processors. System designers are encour-

aged to avoid these implementation-defined combinations.

Table 10-6. Effective Page-Level Memory Type for Pentium Pro and
Pentium II Processors

MTRR Memory Type!l PCD Value PWT Value Effective Memory Type
uc X X uc
wC 0 0 wC

0 1 wC
1 0 wC
1 1 uc
WT 0 X WT
1 X uc
WP 0 0 WP
0 1 WP
1 0 WwC
1 1 uc
WB 0 0 WB
0 1 WT
1 X uc
NOTE:

1. These effective memory types also apply to the Pentium 4, Intel Xeon, and Pentium Ill proces-
sors when the PAT bit is not used (set to 0) in page-table and page-directory entries.

When normal caching is in effect, the effective memory type shown in Table 10-6 is

determined using the following rules:

1. If the PCD and PWT attributes for the page are both 0, then the effective
memory type is identical to the MTRR-defined memory type.

If the PCD flag is set, then the effective memory type is UC.

If the PCD flag is clear and the PWT flag is set, the effective memory type is WT
for the WB memory type and the MTRR-defined memory type for all other

memory types.

4. Setting the PCD and PWT flags to opposite values is considered model-specific for
the WP and WC memory types and architecturally-defined for the WB, WT, and

UC memory types.
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10.5.2.2 Selecting Memory Types for Pentium lll and More Recent
Processor Families

The Intel Core 2 Duo, Intel Atom, Intel Core Duo, Intel Core Solo, Pentium M,
Pentium 4, Intel Xeon, and Pentium lll processors use the PAT to select effective
page-level memory types. Here, a memory type for a page is selected by the MTRRs
and the value in a PAT entry that is selected with the PAT, PCD and PWT bits in a
page-table or page-directory entry (see Section 10.12.3, “Selecting a Memory Type
from the PAT”). Table 10-7 describes the mapping of MTRR memory types and PAT
entry types to effective memory types, when normal caching is in effect (the CD and
NW flags in control register CRO are clear). The combinations shown in gray are
implementation-defined for the Pentium 4, Intel Xeon, and Pentium lll processors.
System designers are encouraged to avoid the implementation-defined combina-
tions.

Table 10-7. Effective Page-Level Memory Types for Pentium Ill and More Recent
Processor Families

MTRR Memory Type PAT Entry Value Effective Memory Type
uc uc uc!
UC- uc!
WC WC
WT uc’
wB uc’
WP uc’
WC uc uce
UC- WC
WC WC
WT uce3
wB WC
WP uce3
WT uc uce
UC- uce
WC WC
WT WT
WB WT
WP wp3
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Table 10-7. Effective Page-Level Memory Types for Pentium lll and More Recent

Processor Families (Contd.)

MTRR Memory Type PAT Entry Value Effective Memory Type
WB uc uce
ucC- uce
WC WC
WT WT
WwB WwB
WP WP
WP uc uce
uC- wc3
WC WC
WT WT3
WB WP
WP WP
NOTES:

1. The UC attribute comes from the MTRRs and the processors are not required to snoop their
caches since the data could never have been cached. This attribute is preferred for performance

reasons.

2. The UC attribute came from the page-table or page-directory entry and processors are required
to check their caches because the data may be cached due to page aliasing, which is not recom-

mended.

3. These combinations were specified as “undefined” in previous editions of the Intel® 64 and IA-32
Architectures Software Developer’s Manual. However, all processors that support both the PAT
and the MTRRs determine the effective page-level memory types for these combinations as

given.

10.5.2.3 Writing Values Across Pages with Different Memory Types

If two adjoining pages in memory have different memory types, and a word or longer
operand is written to a memory location that crosses the page boundary between
those two pages, the operand might be written to memory twice. This action does not
present a problem for writes to actual memory; however, if a device is mapped the
memory space assigned to the pages, the device might malfunction.
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10.5.3

To disable the L1, L2, and L3 caches after they have been enabled and have received

Preventing Caching

cache fills, perform the following steps:

1.

Enter the no-fill cache mode. (Set the CD flag in control register CRO to 1 and
the NW flag to O.

Flush all caches using the WBINVD instruction.

Disable the MTRRs and set the default memory type to uncached or set all MTRRs
for the uncached memory type (see the discussion of the discussion of the TYPE
field and the E flag in Section 10.11.2.1, “IA32_MTRR_DEF_TYPE MSR").

The caches must be flushed (step 2) after the CD flag is set to insure system memory
coherency. If the caches are not flushed, cache hits on reads will still occur and data

will be read from valid cache lines.

The intent of the three separate steps listed above address three distinct require-
ments: (i) discontinue new data replacing existing data in the cache (ii) ensure data
already in the cache are evicted to memory, (iii) ensure subsequent memory refer-
ences observe UC memory type semantics. Different processor implementation of
caching control hardware may allow some variation of software implementation of

these three requirements. See note below.

NOTES

Setting the CD flag in control register CRO modifies the processor’s
caching behaviour as indicated in Table 10-5, but setting the CD flag
alone may not be sufficient across all processor families to force the
effective memory type for all physical memory to be UC nor does it
force strict memory ordering, due to hardware implementation
variations across different processor families. To force the UC
memory type and strict memory ordering on all of physical memory,
it is sufficient to either program the MTRRs for all physical memory to
be UC memory type or disable all MTRRs.

For the Pentium 4 and Intel Xeon processors, after the sequence of
steps given above has been executed, the cache lines containing the
code between the end of the WBINVD instruction and before the
MTRRS have actually been disabled may be retained in the cache
hierarchy. Here, to remove code from the cache completely, a second
WBINVD instruction must be executed after the MTRRs have been
disabled.

For Intel Atom processors, setting the CD flag forces all physical
memory to observe UC semantics (without requiring memory type of
physical memory to be set explicitly). Consequently, software does
not need to issue a second WBINVD as some other processor
generations might require.
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10.5.4 Disabling and Enabling the L3 Cache

On processors based on Intel NetBurst microarchitecture, the third-level cache can
be disabled by bit 6 of the IA32_MISC_ENABLE MSR. The third-level cache disable
flag (bit 6 of the IA32_MISC_ENABLE MSR) allows the L3 cache to be disabled and
enabled, independently of the L1 and L2 caches. Prior to using this control to disable
or enable the L3 cache, software should disable and flush all the processor caches, as
described earlier in Section 10.5.3, “"Preventing Caching,” to prevent of loss of infor-
mation stored in the L3 cache. After the L3 cache has been disabled or enabled,
caching for the whole processor can be restored.

Newer Intel 64 processor with L3 do not support IA32_MISC_ENABLES[bit 6], the
procedure described in Section 10.5.3, “Preventing Caching,” apply to the entire
cache hierarchy.

10.5.5 Cache Management Instructions

The Intel 64 and IA-32 architectures provide several instructions for managing the
L1, L2, and L3 caches. The INVD, WBINVD, and WBINVD instructions are system
instructions that operate on the L1, L2, and L3 caches as a whole. The PREFETCHh
and CLFLUSH instructions and the non-temporal move instructions (MOVNTI,
MOVNTQ, MOVNTDQ, MOVNTPS, and MOVNTPD), which were introduced in
SSE/SSE2 extensions, offer more granular control over caching.

The INVD and WBINVD instructions are used to invalidate the contents of the L1, L2,
and L3 caches. The INVD instruction invalidates all internal cache entries, then
generates a special-function bus cycle that indicates that external caches also should
be invalidated. The INVD instruction should be used with care. It does not force a
write-back of modified cache lines; therefore, data stored in the caches and not
written back to system memory will be lost. Unless there is a specific requirement or
benefit to invalidating the caches without writing back the modified lines (such as,
during testing or fault recovery where cache coherency with main memory is not a
concern), software should use the WBINVD instruction.

The WBINVD instruction first writes back any modified lines in all the internal caches,
then invalidates the contents of both the L1, L2, and L3 caches. It ensures that cache
coherency with main memory is maintained regardless of the write policy in effect
(that is, write-through or write-back). Following this operation, the WBINVD instruc-
tion generates one (P6 family processors) or two (Pentium and Intel486 processors)
special-function bus cycles to indicate to external cache controllers that write-back of
modified data followed by invalidation of external caches should occur.

The PREFETCHA instructions allow a program to suggest to the processor that a
cache line from a specified location in system memory be prefetched into the cache
hierarchy (see Section 10.8, “Explicit Caching”).

The CLFLUSH instruction allow selected cache lines to be flushed from memory. This
instruction give a program the ability to explicitly free up cache space, when it is
known that cached section of system memory will not be accessed in the near future.
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The non-temporal move instructions (MOVNTI, MOVNTQ, MOVNTDQ, MOVNTPS, and
MOVNTPD) allow data to be moved from the processor’s registers directly into
system memory without being also written into the L1, L2, and/or L3 caches. These
instructions can be used to prevent cache pollution when operating on data that is
going to be modified only once before being stored back into system memory. These
instructions operate on data in the general-purpose, MMX, and XMM registers.

10.5.6 L1 Data Cache Context Mode

L1 data cache context mode is a feature of processors based on the Intel NetBurst
microarchitecture that support Intel Hyper-Threading Technology. When
CPUID.1:ECX[bit 10] = 1, the processor supports setting L1 data cache context
mode using the L1 data cache context mode flag ( IA32_MISC_ENABLE[bit 24] ).
Selectable modes are adaptive mode (default) and shared mode.

The BIOS is responsible for configuring the L1 data cache context mode.

10.5.6.1 Adaptive Mode

Adaptive mode facilitates L1 data cache sharing between logical processors. When
running in adaptive mode, the L1 data cache is shared across logical processors in
the same core if:

®* CR3 control registers for logical processors sharing the cache are identical.
®* The same paging mode is used by logical processors sharing the cache.

In this situation, the entire L1 data cache is available to each logical processor
(instead of being competitively shared).

If CR3 values are different for the logical processors sharing an L1 data cache or the
logical processors use different paging modes, processors compete for cache
resources. This reduces the effective size of the cache for each logical processor.
Aliasing of the cache is not allowed (which prevents data thrashing).

10.5.6.2 Shared Mode

In shared mode, the L1 data cache is competitively shared between logical proces-
sors. This is true even if the logical processors use identical CR3 registers and paging
modes.

In shared mode, linear addresses in the L1 data cache can be aliased, meaning that
one linear address in the cache can point to different physical locations. The mecha-
nism for resolving aliasing can lead to thrashing. For this reason,
IA32_MISC_ENABLE[bit 24] = 0 is the preferred configuration for processors based
on the Intel NetBurst microarchitecture that support Intel Hyper-Threading Tech-
nology.
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10.6  SELF-MODIFYING CODE

A write to a memory location in a code segment that is currently cached in the
processor causes the associated cache line (or lines) to be invalidated. This check is
based on the physical address of the instruction. In addition, the P6 family and
Pentium processors check whether a write to a code segment may modify an instruc-
tion that has been prefetched for execution. If the write affects a prefetched instruc-
tion, the prefetch queue is invalidated. This latter check is based on the linear
address of the instruction. For the Pentium 4 and Intel Xeon processors, a write or a
snoop of an instruction in a code segment, where the target instruction is already
decoded and resident in the trace cache, invalidates the entire trace cache. The latter
behavior means that programs that self-modify code can cause severe degradation
of performance when run on the Pentium 4 and Intel Xeon processors.

In practice, the check on linear addresses should not create compatibility problems
among IA-32 processors. Applications that include self-modifying code use the same
linear address for modifying and fetching the instruction. Systems software, such as
a debugger, that might possibly modify an instruction using a different linear address
than that used to fetch the instruction, will execute a serializing operation, such as a
CPUID instruction, before the modified instruction is executed, which will automati-
cally resynchronize the instruction cache and prefetch queue. (See Section 7.1.3,
“Handling Self- and Cross-Modifying Code,” for more information about the use of
self-modifying code.)

For Intel486 processors, a write to an instruction in the cache will modify it in both
the cache and memory, but if the instruction was prefetched before the write, the old
version of the instruction could be the one executed. To prevent the old instruction
from being executed, flush the instruction prefetch unit by coding a jump instruction
immediately after any write that modifies an instruction.

10.7  IMPLICIT CACHING (PENTIUM 4, INTEL XEON,
AND P6 FAMILY PROCESSORS)

Implicit caching occurs when a memory element is made potentially cacheable,
although the element may never have been accessed in the normal von Neumann
sequence. Implicit caching occurs on the P6 and more recent processor families due
to aggressive prefetching, branch prediction, and TLB miss handling. Implicit caching
is an extension of the behavior of existing Intel386, Intel486, and Pentium processor
systems, since software running on these processor families also has not been able
to deterministically predict the behavior of instruction prefetch.

To avoid problems related to implicit caching, the operating system must explicitly
invalidate the cache when changes are made to cacheable data that the cache coher-
ency mechanism does not automatically handle. This includes writes to dual-ported
or physically aliased memory boards that are not detected by the snooping mecha-
nisms of the processor, and changes to page- table entries in memory.
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The code in Example 10-1 shows the effect of implicit caching on page-table entries.
The linear address FOOOH points to physical location BOOOH (the page-table entry for
FOOOH contains the value BOOOH), and the page-table entry for linear address FO00
is PTE_F000.

Example 10-1. Effect of Implicit Caching on Page-Table Entries

mov EAX, CR3; Invalidate the TLB

mov CR3, EAX; by copying CR3 to itself

mov PTE_FO00, AOOOH; Change FOOOH to point to AOOOH
mov EBX, [FOOOH];

Because of speculative execution in the P6 and more recent processor families, the
last MOV instruction performed would place the value at physical location BOOOH into
EBX, rather than the value at the new physical address AOOOH. This situation is
remedied by placing a TLB invalidation between the load and the store.

10.8  EXPLICIT CACHING

The Pentium Ill processor introduced four new instructions, the PREFETCHA instruc-
tions, that provide software with explicit control over the caching of data. These
instructions provide “hints” to the processor that the data requested by a PREFETCHhA
instruction should be read into cache hierarchy now or as soon as possible, in antici-
pation of its use. The instructions provide different variations of the hint that allow
selection of the cache level into which data will be read.

The PREFETCHA instructions can help reduce the long latency typically associated
with reading data from memory and thus help prevent processor “stalls.” However,
these instructions should be used judiciously. Overuse can lead to resource conflicts
and hence reduce the performance of an application. Also, these instructions should
only be used to prefetch data from memory; they should not be used to prefetch
instructions. For more detailed information on the proper use of the prefetch instruc-
tion, refer to Chapter 7, “"Optimizing Cache Usage,” in the Inte/l® 64 and IA-32 Archi-
tectures Optimization Reference Manual.

10.9 INVALIDATING THE TRANSLATION LOOKASIDE
BUFFERS (TLBS)

The processor updates its address translation caches (TLBs) transparently to soft-
ware. Several mechanisms are available, however, that allow software and hardware
to invalidate the TLBs either explicitly or as a side effect of another operation.

The INVLPG instruction invalidates the TLB for a specific page. This instruction is the
most efficient in cases where software only needs to invalidate a specific page,
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because it improves performance over invalidating the whole TLB. This instruction is
not affected by the state of the G flag in a page-directory or page-table entry.

The following operations invalidate all TLB entries except global entries. (A global
entry is one for which the G (global) flag is set in its corresponding page-directory or
page-table entry. The global flag was introduced into the IA-32 architecture in the P6
family processors, see Section 10.5, "Cache Control”.)

® Writing to control register CR3.
®* A task switch that changes control register CR3.

The following operations invalidate all TLB entries, irrespective of the setting of the
G flag:

® Asserting or de-asserting the FLUSH# pin.

® (Pentium 4, Intel Xeon, and later processors only.) Writing to an MTRR (with a
WRMSR instruction).

® Writing to control register CRO to modify the PG or PE flag.

® (Pentium 4, Intel Xeon, and later processors only.) Writing to control register CR4
to modify the PSE, PGE, or PAE flag.

See Section 3.12, “Translation Lookaside Buffers (TLBs),” for additional information
about the TLBs.

10.10 STORE BUFFER

Intel 64 and IA-32 processors temporarily store each write (store) to memory in a
store buffer. The store buffer improves processor performance by allowing the
processor to continue executing instructions without having to wait until a write to
memory and/or to a cache is complete. It also allows writes to be delayed for more
efficient use of memory-access bus cycles.

In general, the existence of the store buffer is transparent to software, even in
systems that use multiple processors. The processor ensures that write operations
are always carried out in program order. It also insures that the contents of the store
buffer are always drained to memory in the following situations:

® When an exception or interrupt is generated.

® (P6 and more recent processor families only) When a serializing instruction is
executed.

®* When an I/O instruction is executed.
® When a LOCK operation is performed.

® (P6 and more recent processor families only) When a BINIT operation is
performed.

® (Pentium lll, and more recent processor families only) When using an SFENCE
instruction to order stores.
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® (Pentium 4 and more recent processor families only) When using an MFENCE
instruction to order stores.

The discussion of write ordering in Section 7.2, *“Memory Ordering,” gives a detailed
description of the operation of the store buffer.

10.11 MEMORY TYPE RANGE REGISTERS (MTRRS)

The following section pertains only to the P6 and more recent processor families.

The memory type range registers (MTRRs) provide a mechanism for associating the
memory types (see Section 10.3, "Methods of Caching Available”) with physical-
address ranges in system memory. They allow the processor to optimize operations
for different types of memory such as RAM, ROM, frame-buffer memory, and
memory-mapped I/O devices. They also simplify system hardware design by elimi-
nating the memory control pins used for this function on earlier IA-32 processors and
the external logic needed to drive them.

The MTRR mechanism allows up to 96 memory ranges to be defined in physical
memory, and it defines a set of model-specific registers (MSRs) for specifying the
type of memory that is contained in each range. Table 10-8 shows the memory types
that can be specified and their properties; Figure 10-4 shows the mapping of physical
memory with MTRRs. See Section 10.3, "Methods of Caching Available,” for a more
detailed description of each memory type.

Following a hardware reset, the P6 and more recent processor families disable all the
fixed and variable MTRRs, which in effect makes all of physical memory uncacheable.
Initialization software should then set the MTRRs to a specific, system-defined
memory map. Typically, the BIOS (basic input/output system) software configures
the MTRRs. The operating system or executive is then free to modify the memory
map using the normal page-level cacheability attributes.

In a multiprocessor system using a processor in the P6 family or a more recent
family, each processor MUST use the identical MTRR memory map so that software
will have a consistent view of memory.

NOTE

In multiple processor systems, the operating system must maintain
MTRR consistency between all the processors in the system (that is,
all processors must use the same MTRR values). The P6 and more
recent processor families provide no hardware support for
maintaining this consistency.

Table 10-8. Memory Types That Can Be Encoded in MTRRs

Memory Type and Mnemonic Encoding in MTRR

Uncacheable (UC) OOH
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Table 10-8. Memory Types That Can Be Encoded in MTRRs (Contd.)

Write Combining (WC) O1H
Reserved* 02H
Reserved* 03H
Write-through (WT) 04H
Write-protected (WP) O5H
Writeback (WB) 06H
Reserved* 7H through FFH
NOTE:

*  Use of these encodings results in a general-protection exception (#GP).

Address ranges not
mapped by an MTRR —
are set to a default type

Physical Memory

8 variable ranges
(from 4 KBytes to
maximum size of
physical memory)

FFFFFFFFH

64 fixed ranges

(4 KBytes each)
16 fixed ranges
(16 KBytes each)

8 fixed ranges
(64-KBytes each) >

100000H
256 KBytes | | 'H

CO0000H
256 KBytes | o T H

80000H

7FFFFH
512 KBytes

0

Figure 10-4. Mapping Physical Memory With MTRRs
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10.11.1 MTRR Feature Identification

The availability of the MTRR feature is model-specific. Software can determine if
MTRRs are supported on a processor by executing the CPUID instruction and reading
the state of the MTRR flag (bit 12) in the feature information register (EDX).

If the MTRR flag is set (indicating that the processor implements MTRRs), additional
information about MTRRs can be obtained from the 64-bit IA32_MTRRCAP MSR
(named MTRRcap MSR for the P6 family processors). The IA32_MTRRCAP MSR is a
read-only MSR that can be read with the RDMSR instruction. Figure 10-5 shows the
contents of the IA32_MTRRCAP MSR. The functions of the flags and field in this
register are as follows:

® VCNT (variable range registers count) field, bits 0 through 7 — Indicates
the number of variable ranges implemented on the processor. The Pentium 4,
Intel Xeon, and P6 family processors have eight pairs of MTRRs for setting up
eight variable ranges.

®* FIX (fixed range registers supported) flag, bit 8 — Fixed range MTRRs
(IA32_MTRR_FIX64K_00000 through IA32_MTRR_FIX4K_0F8000) are
supported when set; no fixed range registers are supported when clear.

®* WC (write combining) flag, bit 10 — The write-combining (WC) memory type
is supported when set; the WC type is not supported when clear.

Bit 9 and bits 11 through 63 in the IA32_MTRRCAP MSR are reserved. If software
attempts to write to the IA32_MTRRCAP MSR, a general-protection exception (#GP)
is generated.

For the Pentium 4, Intel Xeon, and P6 family processors, the IA32_MTRRCAP MSR
always contains the value 508H.

63 11109 8 7 0
wl |F
Reserved c )I( VCNT

WC — Write-combining memory type supported J
FIX — Fixed range registers supported
VCNT — Number of variable range registers

D Reserved

Figure 10-5. IA32_MTRRCAP Register

10.11.2 Setting Memory Ranges with MTRRs

The memory ranges and the types of memory specified in each range are set by three
groups of registers: the IA32_MTRR_DEF_TYPE MSR, the fixed-range MTRRs, and
the variable range MTRRs. These registers can be read and written to using the
RDMSR and WRMSR instructions, respectively. The IA32_MTRRCAP MSR indicates
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the availability of these registers on the processor (see Section 10.11.1, "MTRR
Feature Identification”).

10.11.2.1 I1A32_MTRR_DEF_TYPE MSR

The IA32_MTRR_DEF_TYPE MSR (named MTRRdefType MSR for the P6 family
processors) sets the default properties of the regions of physical memory that are not
encompassed by MTRRs. The functions of the flags and field in this register are as
follows:

Type field, bits 0 through 7 — Indicates the default memory type used for
those physical memory address ranges that do not have a memory type specified
for them by an MTRR (see Table 10-8 for the encoding of this field). The legal
values for this field are 0, 1, 4, 5, and 6. All other values result in a general-
protection exception (#GP) being generated.

Intel recommends the use of the UC (uncached) memory type for all physical
memory addresses where memory does not exist. To assign the UC type to
nonexistent memory locations, it can either be specified as the default type in the
Type field or be explicitly assigned with the fixed and variable MTRRs.

63 1211109 8 7 0

Reserved EIE Type

E — MTRR enable/disable
FE — Fixed-range MTRRs enable/disable ——
Type — Default memory type

D Reserved

Figure 10-6. IA32_MTRR_DEF_TYPE MSR

FE (fixed MTRRs enabled) flag, bit 10 — Fixed-range MTRRs are enabled
when set; fixed-range MTRRs are disabled when clear. When the fixed-range
MTRRs are enabled, they take priority over the variable-range MTRRs when
overlaps in ranges occur. If the fixed-range MTRRs are disabled, the variable-
range MTRRs can still be used and can map the range ordinarily covered by the
fixed-range MTRRs.

E (MTRRs enabled) flag, bit 11 — MTRRs are enabled when set; all MTRRs are
disabled when clear, and the UC memory type is applied to all of physical
memory. When this flag is set, the FE flag can disable the fixed-range MTRRs;
when the flag is clear, the FE flag has no affect. When the E flag is set, the type
specified in the default memory type field is used for areas of memory not
already mapped by either a fixed or variable MTRR.
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Bits 8 and 9, and bits 12 through 63, in the IA32_MTRR_DEF_TYPE MSR are
reserved; the processor generates a general-protection exception (#GP) if software
attempts to write nonzero values to them.

10.11.2.2 Fixed Range MTRRs

The fixed memory ranges are mapped with 11 fixed-range registers of 64 bits each.
Each of these registers is divided into 8-bit fields that are used to specify the memory
type for each of the sub-ranges the register controls:

®* Register IA32_MTRR_FIX64K_00000 — Maps the 512-KByte address range
from OH to 7FFFFH. This range is divided into eight 64-KByte sub-ranges.

* Registers IA32_MTRR_FIX16K_80000 and IA32_MTRR_FIX16K_A0000
— Maps the two 128-KByte address ranges from 80000H to BFFFFH. This range
is divided into sixteen 16-KByte sub-ranges, 8 ranges per register.

®* Registers IA32_MTRR_FIX4K_C0000 through
IA32_MTRR_FIX4K_F8000 — Maps eight 32-KByte address ranges from
COOOOH to FFFFFH. This range is divided into sixty-four 4-KByte sub-ranges, 8
ranges per register.

Table 10-9 shows the relationship between the fixed physical-address ranges and the
corresponding fields of the fixed-range MTRRs; Table 10-8 shows memory type
encoding for MTRRs.

For the P6 family processors, the prefix for the fixed range MTRRs is MTRRfix.

10.11.2.3 Variable Range MTRRs

The Pentium 4, Intel Xeon, and P6 family processors permit software to specify the
memory type for eight variable-size address ranges, using a pair of MTRRs for each
range. The first entry in each pair (IA32_MTRR_PHYSBASEN) defines the base
address and memory type for the range; the second entry
(IA32_MTRR_PHYSMASKnN) contains a mask used to determine the address range.
The “n” suffix indicates register pairs 0 through 7.

For P6 family processors, the prefixes for these variable range MTRRs are MTRRphys-
Base and MTRRphysMask.

Table 10-9. Address Mapping for Fixed-Range MTRRs

Address Range (hexadecimal) MTRR
63 56 55 48 |47 40 (39 32 |31 24 (23 16 |15 8 7 0

70000- [60000- |50000- |40000- |30000- [20000- [10000- |00000- |IA32_MTRR_
7FFFF  |6FFFF  |SFFFF | 4FFFF  |3FFFF  [2FFFF | 1FFFF | OFFFF | FIX64K_00000

9C000 |98000- |94000- |90000- |8CO00- |88000- |84000- |80000- |IA32_MTRR_
OFFFF  |98FFF  |97FFF  |93FFF  |8FFFF  |8BFFF  |B7FFF  [B83FFF  |FIX16K_80000

BCOOO |B8000- |B4000- |BOOOO- |ACOOO- |AB000- |A4000- |AO00O- |IA32_MTRR_
BFFFF  |BBFFF  |B7FFF  |B3FFF |AFFFF  |ABFFF  |A7FFF  |A3FFF | FIX16K_AD00O
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Table 10-9. Address Mapping for Fixed-Range MTRRs (Contd.)

Address Range (hexadecimal) MTRR

63 56 |55 48 (47 40 |39 32 (31 24 |23 16 |15 8 7 0

(7000 |C6000- |C5000- |C4000- |C3000- |C2000- |C1000- |COO00- |IA32_MTRR_
C7FFF  |CEFFF  |CSFFF  |C4FFF  |C3FFF  |C2FFF  [CIFFF  |COFFF | FIX4K_CO0OO

CFOO0  |CEO0O- |CDO0O- |CCO0O- |CBOOO- |CAQOO- |C9000- |C8000- |IA32_MTRR_
CFFFF  |CEFFF  |CDFFF  |CCFFF  |CBFFF  |CAFFF  [COFFF  |C8FFF | FIX4K_C800O

D7000 |D6000- |D5000- |D4000- |D3000- |D2000- |D1000- |DO00O- |IA32_MTRR_
D7FFF  |D6FFF  |DSFFF  |D4FFF  |D3FFF  |D2FFF  |DIFFF | DOFFF | FIX4K_D000O

DFOO0 | DEOOO- |DDOOO- |DCOOO- |DBOOO- |DAOOO- |D9000- |D8O0O- |IA32_MTRR_
DFFFF  |DEFFF  |DDFFF |DCFFF  |DBFFF  |DAFFF  |D9FFF  |D8FFF | FIX4K_D800O

E7000 |€6000- |E5000- |E4000- |€E3000- |€2000- |E1000- |EOOOO- |IA32_MTRR_
E7FFF  |EBFFF  |ESFFF  |E4FFF  |E3FFF  |E2FFF  |ETFFF  |EOFFF | FIX4K_E0000

EF000 EEO0O0- | EDOOO- |ECOOO- |EBOOO- |EAOOO- |ESO00- |EBOOO- |IA32_MTRR_
EFFFF EEFFF EDFFF ECFFF EBFFF EAFFF ESFFF ESFFF FIX4K_EB000

F7000 |F6000- |F5000- |F4000- |F3000- |F2000- |F1000- |FOOOO- |IA32_MTRR_
F7FFF  |FEFFF  |FSFFF  |F4FFF  |F3FFF  |F2FFF  |FIFFF  |FOFFF | FIX4K_FOO0O

FFOOO |FEOOO- |FDOOO- |FCOOO- |FBOOO- |FAQOO- |F9000- |FBO00- |IA32_MTRR_
FFFFF  |FEFFF  |FDFFF  |FCFFF  |FBFFF  |FAFFF  |FOFFF  |FBFFF | FIX4K_F8000

Figure 10-7 shows flags and fields in these registers. The functions of these flags and
fields are:

* Type field, bits 0 through 7 — Specifies the memory type for the range (see
Table 10-8 for the encoding of this field).

* PhysBase field, bits 12 through (MAXPHYADDR-1) — Specifies the base
address of the address range. This 24-bit value, in the case where MAXPHYADDR
is 36 bits, is extended by 12 bits at the low end to form the base address (this
automatically aligns the address on a 4-KByte boundary).

®* PhysMask field, bits 12 through (MAXPHYADDR-1) — Specifies a mask (24
bits if the maximum physical address size is 36 bits, 28 bits if the maximum
physical address size is 40 bits). The mask determines the range of the region
being mapped, according to the following relationships:

— Address_Within_Range AND PhysMask = PhysBase AND PhysMask

— This value is extended by 12 bits at the low end to form the mask value. For
more information: see Section 10.11.3, "Example Base and Mask Calcula-
tions.”

— The width of the PhysMask field depends on the maximum physical address
size supported by the processor.

CPUID.80000008H reports the maximum physical address size supported by
the processor. If CPUID.80000008H is not available, software may assume
that the processor supports a 36-bit physical address size (then PhysMask is
24 bits wide and the upper 28 bits of IA32_MTRR_PHYSMASKnN are reserved).
See the Note below.
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pair when clear.

V (valid) flag, bit 11 — Enables the register pair when set; disables register

63

IA32_MTRR_PHYSBASEn Register
MAXPHYADDR 1211

87

Reserved

PhysBase

Type

63

PhysBase — Base address of rangeJ
Type — Memory type for range

IA32_MTRR_PHYSMASKn Register

MAXPHYADDR

121110

Reserved

PhysMask

\Y%

Reserved

V — Valid

PhysMask — Sets range mask J

|:| Reserved

bits 63:36 are reserved.

MAXPHYADDR: The bit position indicated by MAXPHYADDR depends on the maximum
physical address range supported by the processor. It is reported by CPUID leaf
function 80000008H. If CPUID does not support leaf 80000008H, the processor
supports 36-bit physical address size, then bit PhysMask consists of bits 35:12, and

Figure 10-7. IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn Variable-Range

All other bits in the IA32_MTRR_PHYSBASEn and IA32_MTRR_PHYSMASKn registers
are reserved; the processor generates a general-protection exception (#GP) if soft-

ware attempts to write to them.

Some mask values can result in ranges that are not continuous. In such ranges, the
area not mapped by the mask value is set to the default memory type. Intel does not
encourage the use of “discontinuous” ranges because they could require physical
memory to be present throughout the entire 4-GByte physical memory map. If

Register Pair

memory is not provided, the behaviour is undefined.

It is possible for software to parse the memory descriptions that
BIOS provides by using the ACPI/INT15 e820 interface mechanism.
This information then can be used to determine how MTRRs are
initialized (for example: allowing the BIOS to define valid memory
ranges and the maximum memory range supported by the platform,

including the processor).
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See Section 10.11.4.1, "MTRR Precedences,” for information on overlapping variable
MTRR ranges.

10.11.3 Example Base and Mask Calculations

The examples in this section apply to processors that support a maximum physical
address size of 36 bits. The base and mask values entered in variable-range MTRR
pairs are 24-bit values that the processor extends to 36-bits.

For example, to enter a base address of 2 MBytes (200000H) in the
IA32_MTRR_PHYSBASES register, the 12 least-significant bits are truncated and the
value 000200H is entered in the PhysBase field. The same operation must be
performed on mask values. For example, to map the address range from 200000H to
3FFFFFH (2 MBytes to 4 MBytes), a mask value of FFFEOOOOOH is required. Again, the
12 least-significant bits of this mask value are truncated, so that the value entered in
the PhysMask field of IA32_MTRR_PHYSMASK3 is FFFEOOH. This mask is chosen so
that when any address in the 200000H to 3FFFFFH range is AND’d with the mask
value, it will return the same value as when the base address is AND’d with the mask
value (which is 200000H).

To map the address range from 400000H to 7FFFFFH (4 MBytes to 8 MBytes), a base
value of 000400H is entered in the PhysBase field and a mask value of FFFCOOH is
entered in the PhysMask field.

Example 10-2. Setting-Up Memory for a System

Here is an example of setting up the MTRRs for an system. Assume that the system
has the following characteristics:

® 96 MBytes of system memory is mapped as write-back memory (WB) for highest
system performance.

® A custom 4-MByte I/0 card is mapped to uncached memory (UC) at a base
address of 64 MBytes. This restriction forces the 96 MBytes of system memory to
be addressed from 0 to 64 MBytes and from 68 MBytes to 100 MBytes, leaving a
4-MByte hole for the I/0 card.

®* An 8-MByte graphics card is mapped to write-combining memory (WC) beginning
at address AOOOOOOOH.

® The BIOS area from 15 MBytes to 16 MBytes is mapped to UC memory.

The following settings for the MTRRs will yield the proper mapping of the physical
address space for this system configuration.

IA32_MTRR_PHYSBASEQO = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASKO = 0000 000F FCOO 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASET = 0000 0000 0400 0006H
|IA32_MTRR_PHYSMASK1 = 0000 O0OF FEOO 0800H
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Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASE2 = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASKZ2 = 0000 000F FFCO 0800H
Caches 96-100 MByte as WB cache type.

IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 000F FFCO 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 00F0 O00C0H
IA32_MTRR_PHYSMASK4 = 0000 000F FFFO 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASES = 0000 0000 AOOO 0001H
IA32_MTRR_PHYSMASKS5 = 0000 000F FF80 0800H
Caches AOOO0O000-A0800000 as WC type.

This MTRR setup uses the ability to overlap any two memory ranges (as long as the
ranges are mapped to WB and UC memory types) to minimize the number of MTRR
registers that are required to configure the memory environment. This setup also
fulfills the requirement that two register pairs are left for operating system usage.

10.11.3.1 Base and Mask Calculations for Greater-Than 36-bit Physical
Address Support

For Intel 64 and IA-32 processors that support greater than 36 bits of physical
address size, software should query CPUID.80000008H to determine the maximum
physical address. See the example.

Example 10-3. Setting-Up Memory for a System with a 40-Bit Address Size

If a processor supports 40-bits of physical address size, then the PhysMask field (in
IA32_MTRR_PHYSMASKn registers) is 28 bits instead of 24 bits. For this situation,
Example 10-2 should be modified as follows:

IA32_MTRR_PHYSBASEO = 0000 0000 0000 0006H
IA32_MTRR_PHYSMASKO = 0000 OOFF FCOO 0800H
Caches 0-64 MByte as WB cache type.

IA32_MTRR_PHYSBASE1 = 0000 0000 0400 0006H
IA32_MTRR_PHYSMASK1 = 0000 O0FF FEOO 0800H
Caches 64-96 MByte as WB cache type.

IA32_MTRR_PHYSBASEZ = 0000 0000 0600 0006H
IA32_MTRR_PHYSMASK?Z = 0000 OOFF FFCO 0800H
Caches 96-100 MByte as WB cache type.
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IA32_MTRR_PHYSBASE3 = 0000 0000 0400 0000H
IA32_MTRR_PHYSMASK3 = 0000 OOFF FFCO 0800H
Caches 64-68 MByte as UC cache type.

IA32_MTRR_PHYSBASE4 = 0000 0000 O0FO O00C0H
IA32_MTRR_PHYSMASK4 = 0000 OOFF FFFO 0800H
Caches 15-16 MByte as UC cache type.

IA32_MTRR_PHYSBASES = 0000 0000 A0OOO 0001H
IA32_MTRR_PHYSMASKS5 = 0000 OOFF FF80 0800H
Caches AOOOOO00-A0800000 as WC type.

10.11.4 Range Size and Alignment Requirement

A range that is to be mapped to a variable-range MTRR must meet the following
“power of 2” size and alignment rules:

1.

The minimum range size is 4 KBytes and the base address of the range must be
on at least a 4-KByte boundary.

For ranges greater than 4 KBytes, each range must be of length 2" and its base
address must be aligned on a 2" boundary, where n is a value equal to or greater
than 12. The base-address alignment value cannot be less than its length. For
example, an 8-KByte range cannot be aligned on a 4-KByte boundary. It must be
aligned on at least an 8-KByte boundary.

10.11.4.1 MTRR Precedences

If the MTRRs are not enabled (by setting the E flag in the IA32_MTRR_DEF_TYPE
MSR), then all memory accesses are of the UC memory type. If the MTRRs are
enabled, then the memory type used for a memory access is determined as follows:

1.

If the physical address falls within the first 1 MByte of physical memory and
fixed MTRRs are enabled, the processor uses the memory type stored for the
appropriate fixed-range MTRR.

Otherwise, the processor attempts to match the physical address with a memory
type set by the variable-range MTRRs:

— If one variable memory range matches, the processor uses the memory type
stored in the IA32_MTRR_PHYSBASEnN register for that range.

— If two or more variable memory ranges match and the memory types are
identical, then that memory type is used.

— If two or more variable memory ranges match and one of the memory types
is UC, the UC memory type used.

— If two or more variable memory ranges match and the memory types are WT
and WB, the WT memory type is used.
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— For overlaps not defined by the above rules, processor behavior is undefined.

3. If no fixed or variable memory range matches, the processor uses the default
memory type.

10.11.5 MTRR Initialization

On a hardware reset, the P6 and more recent processors clear the valid flags in vari-
able-range MTRRs and clear the E flag in the IA32_MTRR_DEF_TYPE MSR to disable
all MTRRs. All other bits in the MTRRs are undefined.

Prior to initializing the MTRRs, software (normally the system BIOS) must initialize all
fixed-range and variable-range MTRR register fields to 0. Software can then initialize
the MTRRs according to known types of memory, including memory on devices that it
auto-configures. Initialization is expected to occur prior to booting the operating
system.

See Section 10.11.8, "MTRR Considerations in MP Systems,” for information on
initializing MTRRs in MP (multiple-processor) systems.

10.11.6 Remapping Memory Types

A system designer may re-map memory types to tune performance or because a
future processor may not implement all memory types supported by the Pentium 4,
Intel Xeon, and P6 family processors. The following rules support coherent memory-
type re-mappings:

1. A memory type should not be mapped into another memory type that has a
weaker memory ordering model. For example, the uncacheable type cannot be
mapped into any other type, and the write-back, write-through, and write-
protected types cannot be mapped into the weakly ordered write-combining

type.

2. A memory type that does not delay writes should not be mapped into a memory
type that does delay writes, because applications of such a memory type may
rely on its write-through behavior. Accordingly, the write-back type cannot be
mapped into the write-through type.

3. A memory type that views write data as not necessarily stored and read back by
a subsequent read, such as the write-protected type, can only be mapped to
another type with the same behaviour (and there are no others for the
Pentium 4, Intel Xeon, and P6 family processors) or to the uncacheable type.

In many specific cases, a system designer can have additional information about how
a memory type is used, allowing additional mappings. For example, write-through
memory with no associated write side effects can be mapped into write-back
memory.
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10.11.7 MTRR Maintenance Programming Interface

The operating system maintains the MTRRs after booting and sets up or changes the
memory types for memory-mapped devices. The operating system should provide a
driver and application programming interface (API) to access and set the MTRRs. The
function calls MemTypeGet() and MemTypeSet() define this interface.

10.11.7.1 MemTypeGet() Function

The MemTypeGet() function returns the memory type of the physical memory range
specified by the parameters base and size. The base address is the starting physical
address and the size is the number of bytes for the memory range. The function
automatically aligns the base address and size to 4-KByte boundaries. Pseudocode
for the MemTypeGet() function is given in Example 10-4.

Example 10-4. MemTypeGet() Pseudocode
#define MIXED_TYPES -1 /* 0 < MIXED_TYPES || MIXED_TYPES > 256 */

IF CPU_FEATURES.MTRR /* processor supports MTRRs */
THEN
Align BASE and SIZE to 4-KByte boundary;
IF (BASE + SIZE) wrap 4-GByte address space
THEN return INVALID;

Fl;

IF MTRRdefType.E =0
THEN return UC;

Fl;

FirstType * Get4KMemType (BASE);
/* Obtains memory type for first 4-KByte range. */
/* See Get4KMemType (4KByteRange) in Example 10-5. */
FOR each additional 4-KByte range specified in SIZE
NextType ~ Get4KMemType (4KByteRange);
IF NextType Y4 FirstType
THEN return MixedTypes;
FI;
ROF;
return FirstType;
ELSE return UNSUPPORTED;
Fl;

If the processor does not support MTRRs, the function returns UNSUPPORTED. If the
MTRRs are not enabled, then the UC memory type is returned. If more than one
memory type corresponds to the specified range, a status of MIXED_TYPES is
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returned. Otherwise, the memory type defined for the range (UC, WC, WT, WB, or
WP) is returned.

The pseudocode for the Get4KMemType() function in Example 10-5 obtains the
memory type for a single 4-KByte range at a given physical address. The sample
code determines whether an PHY_ADDRESS falls within a fixed range by comparing
the address with the known fixed ranges: 0 to 7FFFFH (64-KByte regions), 80000H to
BFFFFH (16-KByte regions), and CO000H to FFFFFH (4-KByte regions). If an address
falls within one of these ranges, the appropriate bits within one of its MTRRs deter-
mine the memory type.

Example 10-5. Get4KMemType() Pseudocode

IF IA32 MTRRCAP.FIX AND MTRRdefType.FE /* fixed registers enabled */
THEN IF PHY ADDRESS is within a fixed range
return IA32_MTRR_FIX.Type;
FI;
FOR each variable-range MTRR in IA32_MTRRCAP.VCNT
IFIA32_MTRR_PHYSMASK.V =0
THEN continue;
Fl;
IF (PHY_ADDRESS AND IA32_MTRR_PHYSMASK.Mask) =
(IA32_MTRR_PHYSBASE.Base
AND IA32_MTRR_PHYSMASK.Mask)
THEN
return IA32_MTRR_PHYSBASE.Type;
Fl;
ROF;
return MTRRdefType.Type;

10.11.7.2 MemTypeSet() Function

The MemTypeSet() function in Example 10-6 sets a MTRR for the physical memory
range specified by the parameters base and size to the type specified by type. The
base address and size are multiples of 4 KBytes and the size is not 0.

Example 10-6. MemTypeSet Pseudocode

IF CPU _FEATURES.MTRR (* processor supports MTRRs *)
THEN
IF BASE and SIZE are not 4-KByte aligned or size is O
THEN return INVALID;
FI;
IF (BASE + SIZE) wrap 4-GByte address space
THEN return INVALID;
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FI;
IF TYPE is invalid for Pentium 4, Intel Xeon, and P6 family
processors
THEN return UNSUPPORTED;
FI;
IF TYPE is WC and not supported
THEN return UNSUPPORTED;
FI;
IF IA32 MTRRCAP.FIX is set AND range can be mapped using a
fixed-range MTRR
THEN
pre mtrr change();
update affected MTRR;
post mtrr change();
FI;

ELSE (* try to map using a variable MTRR pair *)
IF IA32 MTRRCAP.VCNT = O
THEN return UNSUPPORTED;
FI;
IF conflicts with current variable ranges
THEN return RANGE OVERLAP;
FI;
IF no MTRRs available
THEN return VAR NOT AVAILABLE;
FI;
IF BASE and SIZE do not meet the power of 2 requirements for
variable MTRRs
THEN return INVALID VAR REQUEST;
FI;
pre mtrr change();
Update affected MTRRs;
post mtrr change();
FI,;

pre mtrr change ()
BEGIN
disable interrupts;
Save current value of CR4;
disable and flush caches;
flush TLBs;
disable MTRRs;
IF multiprocessing
THEN maintain consistency through IPIs;
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FI;

END

post mtrr change()

BEGIN
flush caches and TLBs;
enable MTRRs;
enable caches;
restore value of CR4;
enable interrupts;

END

The physical address to variable range mapping algorithm in the MemTypeSet func-
tion detects conflicts with current variable range registers by cycling through them
and determining whether the physical address in question matches any of the current
ranges. During this scan, the algorithm can detect whether any current variable
ranges overlap and can be concatenated into a single range.

The pre_mtrr_change() function disables interrupts prior to changing the MTRRs, to
avoid executing code with a partially valid MTRR setup. The algorithm disables
caching by setting the CD flag and clearing the NW flag in control register CRO. The
caches are invalidated using the WBINVD instruction. The algorithm flushes all TLB
entries either by clearing the page-global enable (PGE) flag in control register CR4 (if
PGE was already set) or by updating control register CR3 (if PGE was already clear).
Finally, it disables MTRRs by clearing the E flag in the IA32_MTRR_DEF_TYPE MSR.

After the memory type is updated, the post_mtrr_change() function re-enables the
MTRRs and again invalidates the caches and TLBs. This second invalidation is
required because of the processor's aggressive prefetch of both instructions and
data. The algorithm restores interrupts and re-enables caching by setting the CD
flag.

An operating system can batch multiple MTRR updates so that only a single pair of
cache invalidations occur.

10.11.8 MTRR Considerations in MP Systems

In MP (multiple-processor) systems, the operating systems must maintain MTRR
consistency between all the processors in the system. The Pentium 4, Intel Xeon, and
P6 family processors provide no hardware support to maintain this consistency. In
general, all processors must have the same MTRR values.

This requirement implies that when the operating system initializes an MP system, it
must load the MTRRs of the boot processor while the E flag in register MTRRdefType
is 0. The operating system then directs other processors to load their MTRRs with the
same memory map. After all the processors have loaded their MTRRs, the operating
system signals them to enable their MTRRs. Barrier synchronization is used to
prevent further memory accesses until all processors indicate that the MTRRs are
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enabled. This synchronization is likely to be a shoot-down style algorithm, with
shared variables and interprocessor interrupts.

Any change to the value of the MTRRs in an MP system requires the operating system
to repeat the loading and enabling process to maintain consistency, using the
following procedure:

> WD

10.

11.

12.

13.
14.
15.

Broadcast to all processors to execute the following code sequence.
Disable interrupts.
Wait for all processors to reach this point.

Enter the no-fill cache mode. (Set the CD flag in control register CRO to 1 and the
NW flag to 0.)

Flush all caches using the WBINVD instructions. Note on a processor that
supports self-snooping, CPUID feature flag bit 27, this step is unnecessary.

If the PGE flag is set in control register CR4, flush all TLBs by clearing that flag.

If the PGE flag is clear in control register CR4, flush all TLBs by executing a MOV
from control register CR3 to another register and then a MOV from that register
back to CR3.

Disable all range registers (by clearing the E flag in register MTRRdefType). If
only variable ranges are being modified, software may clear the valid bits for the
affected register pairs instead.

Update the MTRRs.

Enable all range registers (by setting the E flag in register MTRRdefType). If only
variable-range registers were modified and their individual valid bits were
cleared, then set the valid bits for the affected ranges instead.

Flush all caches and all TLBs a second time. (The TLB flush is required for
Pentium 4, Intel Xeon, and P6 family processors. Executing the WBINVD
instruction is not needed when using Pentium 4, Intel Xeon, and P6 family
processors, but it may be needed in future systems.)

Enter the normal cache mode to re-enable caching. (Set the CD and NW flags in
control register CRO to 0.)

Set PGE flag in control register CR4, if cleared in Step 6 (above).
Wait for all processors to reach this point.

Enable interrupts.

10.11.9 Large Page Size Considerations

The MTRRs provide memory typing for a limited number of regions that have a

4 KByte granularity (the same granularity as 4-KByte pages). The memory type for a
given page is cached in the processor’s TLBs. When using large pages (2 or

4 MBytes), a single page-table entry covers multiple 4-KByte granules, each with a
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single memory type. Because the memory type for a large page is cached in the TLB,
the processor can behave in an undefined manner if a large page is mapped to a
region of memory that MTRRs have mapped with multiple memory types.

Undefined behavior can be avoided by insuring that all MTRR memory-type ranges
within a large page are of the same type. If a large page maps to a region of memory
containing different MTRR-defined memory types, the PCD and PWT flags in the
page-table entry should be set for the most conservative memory type for that
range. For example, a large page used for memory mapped I/O and regular memory
is mapped as UC memory. Alternatively, the operating system can map the region
using multiple 4-KByte pages each with its own memory type.

The requirement that all 4-KByte ranges in a large page are of the same memory
type implies that large pages with different memory types may suffer a performance
penalty, since they must be marked with the lowest common denominator memory

type.

The Pentium 4, Intel Xeon, and P6 family processors provide special support for the
physical memory range from 0 to 4 MBytes, which is potentially mapped by both the
fixed and variable MTRRs. This support is invoked when a Pentium 4, Intel Xeon, or
P6 family processor detects a large page overlapping the first 1 MByte of this
memory range with a memory type that conflicts with the fixed MTRRs. Here, the
processor maps the memory range as multiple 4-KByte pages within the TLB. This
operation insures correct behavior at the cost of performance. To avoid this perfor-
mance penalty, operating-system software should reserve the large page option for
regions of memory at addresses greater than or equal to 4 MBytes.

10.12 PAGE ATTRIBUTE TABLE (PAT)

The Page Attribute Table (PAT) extends the IA-32 architecture’s page-table format to
allow memory types to be assigned to regions of physical memory based on linear
address mappings. The PAT is a companion feature to the MTRRs; that is, the MTRRs
allow mapping of memory types to regions of the physical address space, where the
PAT allows mapping of memory types to pages within the linear address space. The
MTRRs are useful for statically describing memory types for physical ranges, and are
typically set up by the system BIOS. The PAT extends the functions of the PCD and
PWT bits in page tables to allow all five of the memory types that can be assigned
with the MTRRs (plus one additional memory type) to also be assigned dynamically
to pages of the linear address space.

The PAT was introduced to IA-32 architecture on the Pentium lll processor. It is also
available in the Pentium 4 and Intel Xeon processors.

10.12.1 Detecting Support for the PAT Feature

An operating system or executive can detect the availability of the PAT by executing
the CPUID instruction with a value of 1 in the EAX register. Support for the PAT is indi-
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cated by the PAT flag (bit 16 of the values returned to EDX register). If the PAT is
supported, the operating system or executive can use the IA32_CR_PAT MSR to
program the PAT. When memory types have been assigned to entries in the PAT, soft-
ware can then use of the PAT-index bit (PAT) in the page-table and page-directory
entries along with the PCD and PWT bits to assign memory types from the PAT to
individual pages.

Note that there is no separate flag or control bit in any of the control registers that
enables the PAT. The PAT is always enabled on all processors that support it, and the
table lookup always occurs whenever paging is enabled, in all paging modes.

10.12.2 1A32_CR_PAT MSR

The IA32_CR_PAT MSR is located at MSR address 277H (see to Appendix B, “"Model-
Specific Registers (MSRs),” and this address will remain at the same address on
future IA-32 processors that support the PAT feature. Figure 10-8. shows the format
of the 64-bit IA32_CR_PAT MSR.

The IA32_CR_PAT MSR contains eight page attribute fields: PAO through PA7. The
three low-order bits of each field are used to specify a memory type. The five high-
order bits of each field are reserved, and must be set to all 0s. Each of the eight page
attribute fields can contain any of the memory type encodings specified in Table
10-10.

31 27 26 24 23 19 18 16 15 11 10 8 7 3 2 0
’ Reserved ‘ PA3 ’ Reserved ‘ PA2 | Reserved | PA1 | Reserved ’ PAO ‘

63 59 58 56 55 51 50 48 47 43 42 40 39 35 34 32
’Reserved ‘PA7 ’Reserved ‘PAG |Reserved |PA5 |Reserved ’PA4 ‘

Figure 10-8. IA32_CR_PAT MSR

Note that for the P6 family processors, the IA32_CR_PAT MSR is named the PAT MSR.
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Table 10-10. Memory Types That Can Be Encoded With PAT

Encoding Mnemonic
OOH Uncacheable (UC)
O1H Write Combining (WC)
02H Reserved*
O3H Reserved*
04H Write Through (WT)
O5H Write Protected (WP)
06H Write Back (WB)
07H Uncached (UC-)
08H - FFH Reserved*

NOTE:
* Using these encodings will result in a general-protection exception (#GP).

10.12.3 Selecting a Memory Type from the PAT

To select a memory type for a page from the PAT, a 3-bit index made up of the PAT,
PCD, and PWT bits must be encoded in the page-table or page-directory entry for the
page. Table 10-11 shows the possible encodings of the PAT, PCD, and PWT bits and
the PAT entry selected with each encoding. The PAT bit is bit 7 in page-table entries
that point to 4-KByte pages (see Figures 3-14 and 3-20) and bit 12 in page-directory
entries that point to 2-MByte or 4-MByte pages (see Figures 3-15, 3-21, and 3-23).
The PCD and PWT bits are always bits 4 and 3, respectively, in page-table and page-
directory entries.

The PAT entry selected for a page is used in conjunction with the MTRR setting for the
region of physical memory in which the page is mapped to determine the effective
memory type for the page, as shown in Table 10-7.

Table 10-11. Selection of PAT Entries with PAT, PCD, and PWT Flags

PAT PCD PWT PAT Entry
0 0 0 PATO
0 0 1 PAT1
0 1 0 PAT2
0 1 1 PAT3
1 0 0 PAT4
1 0 1 PAT5
1 1 0 PAT6
1 1 1 PAT7

10-48 Vol. 3




MEMORY CACHE CONTROL

10.12.4 Programming the PAT

Table 10-12 shows the default setting for each PAT entry following a power up or
reset of the processor. The setting remain unchanged following a soft reset (INIT
reset).

Table 10-12. Memory Type Setting of PAT Entries Following a Power-up or Reset

PAT Entry Memory Type Following Power-up or Reset
PATO WB
PAT1 WT
PAT2 uc-
PAT3 uc
PAT4 wB
PATS WT
PAT6 uc-
PAT7 uc

The values in all the entries of the PAT can be changed by writing to the IA32_CR_PAT
MSR using the WRMSR instruction. The IA32_CR_PAT MSR is read and write acces-
sible (use of the RDMSR and WRMSR instructions, respectively) to software operating
at a CPL of 0. Table 10-10 shows the allowable encoding of the entries in the PAT.
Attempting to write an undefined memory type encoding into the PAT causes a
general-protection (#GP) exception to be generated.

The operating system is responsible for insuring that changes to a PAT entry occur in
a manner that maintains the consistency of the processor caches and translation
lookaside buffers (TLB). This is accomplished by following the procedure as specified
in Section 10.11.8, "MTRR Considerations in MP Systems,” for changing the value of
an MTRR in a multiple processor system. It requires a specific sequence of operations
that includes flushing the processors caches and TLBs.

The PAT allows any memory type to be specified in the page tables, and therefore it
is possible to have a single physical page mapped to two or more different linear
addresses, each with different memory types. Intel does not support this practice
because it may lead to undefined operations that can result in a system failure. In
particular, a WC page must never be aliased to a cacheable page because WC writes
may not check the processor caches.

When remapping a page that was previously mapped as a cacheable memory type to
a WC page, an operating system can avoid this type of aliasing by doing the
following:

1. Remove the previous mapping to a cacheable memory type in the page tables;
that is, make them not present.
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2. Flush the TLBs of processors that may have used the mapping, even specula-
tively.

3. Create a new mapping to the same physical address with a new memory type, for
instance, WC.

4. Flush the caches on all processors that may have used the mapping previously.
Note on processors that support self-snooping, CPUID feature flag bit 27, this
step is unnecessary.

Operating systems that use a page directory as a page table (to map large pages)
and enable page size extensions must carefully scrutinize the use of the PAT index bit
for the 4-KByte page-table entries. The PAT index bit for a page-table entry (bit 7)
corresponds to the page size bit in a page-directory entry. Therefore, the operating
system can only use PAT entries PAO through PA3 when setting the caching type for
a page table that is also used as a page directory. If the operating system attempts
to use PAT entries PA4 through PA7 when using this memory as a page table, it effec-
tively sets the PS bit for the access to this memory as a page directory.

For compatibility with earlier IA-32 processors that do not support the PAT, care
should be taken in selecting the encodings for entries in the PAT (see Section
10.12.5, “"PAT Compatibility with Earlier IA-32 Processors”).

10.12.5 PAT Compatibility with Earlier IA-32 Processors

For IA-32 processors that support the PAT, the IA32_CR_PAT MSR is always active.
That is, the PCD and PWT bits in page-table entries and in page-directory entries
(that point to pages) are always select a memory type for a page indirectly by
selecting an entry in the PAT. They never select the memory type for a page directly
as they do in earlier IA-32 processors that do not implement the PAT (see Table
10-6).

To allow compatibility for code written to run on earlier IA-32 processor that do not
support the PAT, the PAT mechanism has been designed to allow backward compati-
bility to earlier processors. This compatibility is provided through the ordering of the
PAT, PCD, and PWT bits in the 3-bit PAT entry index. For processors that do not imple-
ment the PAT, the PAT index bit (bit 7 in the page-table entries and bit 12 in the page-
directory entries) is reserved and set to 0. With the PAT bit reserved, only the first
four entries of the PAT can be selected with the PCD and PWT bits. At power-up or
reset (see Table 10-12), these first four entries are encoded to select the same
memory types as the PCD and PWT bits would normally select directly in an IA-32
processor that does not implement the PAT. So, if encodings of the first four entries
in the PAT are left unchanged following a power-up or reset, code written to run on
earlier IA-32 processors that do not implement the PAT will run correctly on IA-32
processors that do implement the PAT.
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